Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precursor components, self-assembly

The first elastomeric protein is elastin, this structural protein is one of the main components of the extracellular matrix, which provides stmctural integrity to the tissues and organs of the body. This highly crosslinked and therefore insoluble protein is the essential element of elastic fibers, which induce elasticity to tissue of lung, skin, and arteries. In these fibers, elastin forms the internal core, which is interspersed with microfibrils [1,2]. Not only this biopolymer but also its precursor material, tropoelastin, have inspired materials scientists for many years. The most interesting characteristic of the precursor is its ability to self-assemble under physiological conditions, thereby demonstrating a lower critical solution temperature (LCST) behavior. This specific property has led to the development of a new class of synthetic polypeptides that mimic elastin in its composition and are therefore also known as elastin-like polypeptides (ELPs). [Pg.72]

Self-assembly of the precursor components in the EISA process starts after evaporation of part of the volatile solvent, which progressively enriches the solution with respect to surfactant, precursor, and water. When their concentration in the deposited him achieves a certain critical level, mesostructure formation takes place. The latter is in equilibrium with the processing atmosphere. So the relative humidity, as well as the temperature during him deposition, represent some of the most important parameters influencing the mesostructure formation. [Pg.288]

The self-assembly of a chiral Ti catalyst can be achieved by using the achiral precursor Ti(OPr )4 and two different chiral diol components, (R)-BINOL and (R,R)-TADDOL, in a molar ratio of 1 1 1. The components of less basic (R)-BINOL and the relatively more basic (R,R)-TADDOL assemble with Ti(OPr )4 in a molar ratio of 1 1 1, yielding chiral titanium catalyst 118 in the reaction system. In the asymmetric catalysis of the carbonyl-ene reaction, 118 is not only the most enantioselective catalyst but also the most stable and the exclusively formed species in the reaction system. [Pg.485]

The question as to the potential availability of the requisite amphiphilic precursors in the prebiotic environment has been addressed experimentally by Deamer and coworkers, [143,145] who looked into the uncontaminated Murchison chondrite for the presence of such amphiphilic constituents. Samples of the meteorite were extracted with chloroform-methanol and the extracts were fractionated by thin-layer chromatography, with the finding that some of the fractions afforded components that formed monomolecular films at air-water interfaces, and that were also able to self-assemble into membranous vesicles able to encapsulate polar solutes. These observations dearly demonstrated that amphiphiles plausibly available on the primitive Earth by meteoritic infall have the ability to self-assemble into the membranous vesides of minimum protocells. ... [Pg.196]

Building blocks (monomers) for enzyme-controlled supramolecular polymerisations are comprised of three components (1) an enzyme-specific target (biomolecule based on the enzyme s substrate specificity), (2) a self-assembly component that directs the non-covalent interaction responsible for supramolecular polymerisation, and (3) a molecular switch component that prevents precursor self-assembly and activates self-assembly upon enzyme action. [Pg.130]

Building blocks are amphiphiles, which have a delicate balance between the hydrophilic and hydrophobic group crucial to facilitate self-assembly. The peptide component serves to precisely control this balance, and the enzymatic reaction serves to alter it in favour of self-assembly. As illustrated in Fig. 3, the molecular switch may involve (1) phosphatase-catalysed removal of a (phosphate) group from the precursor to control the electrostatic balance (reaction (i) in Fig. 3) (2) hydrolysis of alkyl esters by hydrolases to change the amphiphilic balance (reaction (ii) in Fig. 3) or (3) condensation between two non-self-assembling precursors via a condensation reaction, e.g. involving protease-catalysed amide synthesis to alter the hydrophilic/hydrophobic balance (reaction (iii) in Fig. 3). A number of examples of each type are summarised in Table 1. [Pg.133]

A number of dynamic supramolecular polymers control vital functions in biology. These are tightly regulated by highly selective and spatially confined catalytic mechanisms whereby non-assembling precursors are catalytically activated to produce self-assembling components. [Pg.140]

There are two distinct approaches to catenane synthesis the statistical approach, and approaches relying on self-assembly, so-called directed synthesis . The statistical approach relies on the small chance that macrocyclisation may occur while a linear precursor is threaded through a macrocyclic component. Because this is a rather unlikely eventuality, it naturally results in low yields of interlinked product and is chiefly of historical interest. It was this kind of statistical approach that resulted in the first synthesis of a [2] catenane by Wasserman in 1960 (10.64), from cyclisation of the long-chain diester 10.65 while threaded through the annulus of a deuterated C34 cycloalkane 10.66 (Scheme 10.11), 57 Although the overall yield of the catenation reaction was less than 1 %, the existence of the catenane was firmly established. The relatively polar [2] catenane product, along with other polar macrocyclisation reaction products and... [Pg.688]

Finally, structural characterization of hybrid materials must be refined in many cases, it is unclear where the organic component is located within the overall meso-stmcture of the material. Coupled with experimental data, simulations of the self-assembly process in hybrid materials79 should yield greater insight into the local structure of hybrid precursors. [Pg.543]

The quantitative study of polymer surfaces and interfaces is about ten years old and so is a relatively recent subject. It is therefore not surprising that there are many possibilities for future research. Many of the phenomena that occur at polymer interfaces are related to self-assembly. Even the simplest example, that of surface segregation of one component of a polymer blend to an interface is self-assembly. This is because where we initially had a homogeneous film, we now have one with two layers, a bulk layer and a surface segregated layer. We have shown how even such a well-studied phenomenon as surface segregation can have a future because with it one can generate a surface which could provide an excellent precursor to an interface. [Pg.145]

Self-assembly processes involving covalent modifications typically comprise one of the earlier classes of self-assembly followed by, preceded by, or intermixed with conventional covalent bond formation. In coordination chemistry, for example, self-assembly with precursor modification means synthesizing the component ligands and metal complexes before carrying out the reaction. Post-modification involves locking a self-assembled structure into a kinetically stable state. Self-assembly with intermittent processing involves combinations of both of these. [Pg.748]


See other pages where Precursor components, self-assembly is mentioned: [Pg.394]    [Pg.90]    [Pg.360]    [Pg.983]    [Pg.265]    [Pg.271]    [Pg.189]    [Pg.219]    [Pg.247]    [Pg.66]    [Pg.146]    [Pg.349]    [Pg.144]    [Pg.629]    [Pg.635]    [Pg.639]    [Pg.47]    [Pg.177]    [Pg.208]    [Pg.175]    [Pg.50]    [Pg.96]    [Pg.533]    [Pg.600]    [Pg.489]    [Pg.166]    [Pg.486]    [Pg.110]    [Pg.258]    [Pg.250]    [Pg.648]    [Pg.865]    [Pg.698]    [Pg.702]    [Pg.177]    [Pg.296]    [Pg.296]    [Pg.564]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Assembled components

Component assembly

Precursor assemblies

© 2024 chempedia.info