Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Praseodymium carbonates

The thermal dissociation of praseodymium carbonate in an O2 atmosphere yields an intermediate tetravalent carbonate. This decomposes at much lower temperature (295-310°C) than tetravalent cerium carbonate (Pajakoflf, 1968). [Pg.241]

A Study of the Decomposition of Praseodymium Hydroxy Carbonate and Praseodymium Carbonate Hydrate, R. Sharma, H. Hinode and L. Eyring, J. Solid State Chem., 92, 401 19(1991). [Pg.552]

As indicated later (see Section VI,8), on addition of the chloride of praseodymium, europium, or other lanthanides to mono- or poly-sac-charide phosphates in D20, the signals of carbon atoms substituted with phosphate groups are recognizable, as they are displaced, relative to the rest of the 13C-n.m.r. spectrum.155 However, this diagnostic method is not applicable to sulfated polysaccharides, as signal displacements were not observed on addition of praseodymium or europium chloride to a solution of a,/3-D-galactose 6-sulfate or its sodium salt.156... [Pg.77]

In addition to the coupled-signal method just described, phosphorylated carbon signals can be detected by use of praseodymium chloride, which displaces a- and /8-carbon resonances of a,/8-D-mannose 6-phosphate and a-D-mannosyl phosphate downfield, with little effect on other resonances. Europium chloride has analogous properties, except that the displacements are upfield. With certain polysaccharides, such as the O-phosphonomannan of Hansenula capsulata (29), the sig-... [Pg.86]

Ives et al. (79) tended to reject our hypothesis that brown colours of mixed oxides (and in particular less pure NdaOs) are due to traces of praseodymium. However, these authors noted the interesting effect that such dark colours (also of Pro,oaTho.9802) bleach in the reflection spectrum at higher T. It was noted that mantles of NdaOa alone rapidly hydrate to a pinkish powder (carbonate ) in humid air. It is weU-known that -type sesquioxides are far more reactive, and for instance dissolve almost instantaneously in aqueous acid, than cubic C-type samples. Ives et al. 19) also studied the broad continuous spectrum of the orange light emitted from Thi- 11 0 2+2/ where the oxidation state of uranium is rather uncertain. [Pg.8]

Nucleophilic substitution at the 3-carbon of 2/7-1,4-thiazines 192 <1969JHC247> and 193 <1992CPB1025> and nucleophilic addition to the 3-carbon of 2/7-1,4-benzothiazine 194 <1999TL2565> have been reported (Scheme 15). The catalyst used in the reaction of 194 is prepared from praseodymium(lll) isopropoxide and (R)-binaphthol. [Pg.628]

In this work, we will show that the addition of TCM to the feedstream in the methane conversion process results in the enhancement of the conversion of methane and the selectivity to C2 hydrocarbons on praseodymium oxide primarily as a result of the formation of praseodymium oxychloride, in contrast with the production of carbon oxides on praseodymium oxide in the absence of TCM (8-10). The surface properties of these catalysts are characterized by application of adsorption experiments and X-ray photoelectron spectroscopy (XPS). [Pg.327]

The adsorption of carbon dioxide or oxygen on praseodymium samples was measured by a constant-volume method using a calibrated Pirani vacuum gauge. Praseodymium oxide was heated in oxygen (4 kPa) at 775°C for 1 h, then evacuated at 750°C for 0.5 h just before the measurement. The sample of praseodymium oxychloride was prepared from praseodymium chloride by heating under oxygen flow... [Pg.327]

Methane Conversion. The results for the conversion of methane on praseodymium oxide are shown in Figure 1 and Table I. The major products were carbon monoxide, carbon dioxide, ethylene, and ethane both in the presence and absence of TCM in the feedstream while small amounts of formaldehyde and C3 compounds were detected. Water and hydrogen were also produced. The catalyst produced low methane conversion (ca. 6%) and selectivity to C2+ compounds (ca. 30%) in the absence of TCM in the feedstream. On addition of TCM the conversion of methane after 0.5 h on-stream was increased by almost two-fold (11.9%) and increased still further to 17.2% after 6 h on-stream. The selectivity to C2+ also increased with time on-stream to 43.3% after 6 h on-stream. It is noteworthy that over the 6 h on-stream with TCM present the ratio increased from 1.0 to 2.1. No methyl chloride was... [Pg.328]

Adsorption of Carbon Dioxide and Oxygen on Praseodymium Samples. [Pg.330]

Adsorption of carbon dioxide or oxygen on the praseodymium samples was carried out in the pressure range of 1-40 Pa to evaluate the number of chemisorption sites on the samples. Praseodymium oxide irreversibly adsorbed 9.5 x 10" mol g of carbon dioxide. The amount of oxygen irreversibly adsorbed on the sample was 15.2 x 10" mol g Carbon dioxide or oxygen was not adsorbed on the samples containing chlorine, i.e., praseodymium chloride and praseodymium oxychloride prepared from the chloride by heating under oxygen flow at 750°C for 1 h. [Pg.330]

The Surface Properties of the Praseodymium Compound. Although the efficiency of catalysts in methane conversion has been ascribed to a variety of properties, a number of researchers have demonstrated the importance of basicity of the catalysts employed in this process (14-16). Thus estimates of basicity, such as may be obtained from the adsorption of carbon dioxide, are of some value in characterizing the catalysts. It is obvious that the surface state of a working catalyst at 750°C is different from that at room temperature. However, measurements of the adsorption of carbon dioxide at the latter temperature provide semiquantitative information on sites capable of donating electrons. [Pg.336]

No adsorption of carbon dioxide or oxygen was observed on either praseodymium chloride or oxychloride. This finding is consistent with the XPS results. The main peaks at 529 eV in the spectra for praseodymium oxychloride samples are also attributed to the lattice oxygen of the oxychloride while the peaks at 531 eV are assignable to O Is for praseodymium oxide, suggesting that the surfaces of the oxychloride samples are partially oxidized to praseodymium oxide. The 3d binding energy of 933 eV for praseodymium in the chloride and oxychloride implies that the valence of praseodymium is 3+, while the shoulder at 928 eV could be attributed to metallic praseodymium (77). [Pg.337]

The basis for applying the LIS quantitatively to problems in stereochemistry depends upon expressions including the term (3 cos2 — l)r-3, where r is the distance from the carbon to the lanthanide ion and the angle d is defined by the symmetry axis of the complex and the vector from the lanthanide ion to the carbon in question. This application depends on a LIS imposed entirely by the pseudocontact mechanism. It has been shown that the contact mechanism is important for europium and praseodymium complexes in 13C NMR for distances up to four bonds from the site of complexation, and that ytterbium complexes interact with 13C nuclei largely, if not entirely, by the pseudocontact process. (12, 13)... [Pg.201]

Rare earth nitrates can be prepared using nitric acid to react with a corresponding oxide, hydroxide, carbonate or metal. These nitrates dissolve easily in polar solvents such as water, alcohols, esters or nitriles. They are unstable to heat as the decomposition temperature for the nitrates of scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, and samarium are 510,480, 780,450, 505, 830, and 750 °C, respectively. [Pg.32]

When rare earth oxides, hydroxides, or carbonates react with dilute sulfuric acid, rare earth sulfate hydrates are obtained and they have the formula RE2(S04)3 H20 where = 3,4,5, 6,8, and 9. The most common is = 9 for lanthanum and cerium and = 8 for praseodymium to lutetium and yttrium. Anhydrous compounds may be obtained by heating the respective rare earth sulfate hydrate at 155-260 °C, however, they easily absorb water to become hydrated again. [Pg.35]


See other pages where Praseodymium carbonates is mentioned: [Pg.521]    [Pg.521]    [Pg.179]    [Pg.468]    [Pg.474]    [Pg.819]    [Pg.34]    [Pg.108]    [Pg.361]    [Pg.339]    [Pg.48]    [Pg.137]    [Pg.320]    [Pg.50]    [Pg.43]    [Pg.326]    [Pg.328]    [Pg.332]    [Pg.336]    [Pg.337]    [Pg.337]    [Pg.361]    [Pg.402]    [Pg.706]    [Pg.332]    [Pg.1366]    [Pg.938]    [Pg.115]    [Pg.2534]    [Pg.309]    [Pg.3448]    [Pg.810]    [Pg.708]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



© 2024 chempedia.info