Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentials equilibrium position

If the total energy associated with the state is equal to the potential energy at the equilibrium position, it follows that... [Pg.21]

Figure Bl.1.1. (a) Potential curves for two states with little or no difference in the equilibrium position of tire upper and lower states. A ttansition of O2, witli displacement only 0.02 A, is shown as an example. Data taken from [11]. Most of the mtensity is in the 0-0 vibrational band with a small intensity in the 1-0 band, (b) Potential curves for two states with a large difference in the equilibrium position of the two states. A ttansition in I2, with a displacement of 0.36 A, is shown as an example. Many vibrational peaks are observed. Figure Bl.1.1. (a) Potential curves for two states with little or no difference in the equilibrium position of tire upper and lower states. A ttansition of O2, witli displacement only 0.02 A, is shown as an example. Data taken from [11]. Most of the mtensity is in the 0-0 vibrational band with a small intensity in the 1-0 band, (b) Potential curves for two states with a large difference in the equilibrium position of the two states. A ttansition in I2, with a displacement of 0.36 A, is shown as an example. Many vibrational peaks are observed.
In Chapter IX, Liang et al. present an approach, termed as the crude Bom-Oppenheimer approximation, which is based on the Born-Oppen-heimer approximation but employs the straightforward perturbation method. Within their chapter they develop this approximation to become a practical method for computing potential energy surfaces. They show that to carry out different orders of perturbation, the ability to calculate the matrix elements of the derivatives of the Coulomb interaction with respect to nuclear coordinates is essential. For this purpose, they study a diatomic molecule, and by doing that demonstrate the basic skill to compute the relevant matrix elements for the Gaussian basis sets. Finally, they apply this approach to the H2 molecule and show that the calculated equilibrium position and foree constant fit reasonable well those obtained by other approaches. [Pg.771]

For the equilibrium M(s) M (aq) + 2e, it might then be (correctly) assumed that the equilibrium for copper is further to the left than for zinc, i.e. copper has less tendency to form ions in solution than has zinc. The position of equilibrium (which depends also on temperature and concentration) is related to the relative reducing powers of the metals when two different metals in solutions of their ions are connected (as shown in Figure 4.1 for the copper-zinc cell) a potential difference is noted because of the differing equilibrium positions. [Pg.97]

We have seen that the energetic feasibility of a reaction can be deduced from redox potential data. It is also possible to deduce the theoretical equilibrium position for a reaction. In Chapter 3 we saw that when AG = 0 the system is at equilibrium. Since AG = — nFE. this means that the potential of the cell must be zero. Consider once again the reaction... [Pg.104]

As a simple example of a normal mode calculation consider the linear triatomic system ir Figure 5.16. We shall just consider motion along the long axis of the molecule. The displace ments of the atoms from their equilibrium positions along this axis are denoted by It i assumed that the displacements are small compared with the equilibrium values Iq and th( system obeys Hooke s law with bond force constants k. The potential energy is given by ... [Pg.293]

We envision a potential energy surface with minima near the equilibrium positions of the atoms comprising the molecule. The MM model is intended to mimic the many-dimensional potential energy surface of real polyatomic molecules. (MM is little used for very small molecules like diatomies.) Once the potential energy surface iias been established for an MM model by specifying the force constants for all forces operative within the molecule, the calculation can proceed. [Pg.98]

Suppose, for simplicity, that the masses in Fig. 5-lb are the same, tti = m2 = m, and all three springs are the same, but veloeities and displaeements of the masses may not be the same. Let one mass be displaeed by a distance x from its equilibrium position while the other is displaeed by a distanee X2- The only plaee the potential energy V... [Pg.132]

The vibrational potential may be expanded in a Taylor series about the equilibrium positions of the atoms. [Pg.333]

The potential energy 0(z) depends not only on the distance z hut also on the position of the gas molecule in the xy plane parallel to the surface of the solid and distant z from it. For any given position, the adsorption energy will be equal to the value of 0 = 0o minimum of the potential curve (cf. Fig. 1.2), which of course represents the equilibrium position. [Pg.8]

The membrane potential for a Ag2S pellet develops as the result of a difference in the equilibrium position of the solubility reaction... [Pg.479]

Every chemical reaction occurs at a finite rate and, therefore, can potentially serve as the basis for a chemical kinetic method of analysis. To be effective, however, the chemical reaction must meet three conditions. First, the rate of the chemical reaction must be fast enough that the analysis can be conducted in a reasonable time, but slow enough that the reaction does not approach its equilibrium position while the reagents are mixing. As a practical limit, reactions reaching equilibrium within 1 s are not easily studied without the aid of specialized equipment allowing for the rapid mixing of reactants. [Pg.624]

In the second method, which can be applied to compounds with an optically active center near the potentially tautomeric portion of the molecule, the effect of the isomerization on the optical activity is measured. In favorable cases both the rate of racemization and the equilibrium position can be determined. This method has been used extensively to study the isomerization of sugars and their derivatives (cf. reference 75). It has not been used much to study heteroaromatic compounds, although the very fact that certain compounds have been obtained optically active determines their tautomeric form. For example, oxazol-5-ones have thus been shown to exist in the CH form (see Volume 2, Section II,D,1, of article IV by Katritzky and Lagowski). [Pg.338]

Here, u is the displacement of the /ith molecule from its equilibrium position and M the reduced mass of each molecular site. Second, the electron is described within the frame of the tight-binding approximation, where it is assumed that the effect of the potential at a given site of the one-dimensional chain is limited to its nearest neighbors. In that case, the energy dispersion of the electron is given by... [Pg.567]

In 1936, de Boer formulated his theory of a stressed bond which, despite its simplicity, still constitutes the basis for most models of chemical reactivity under stress [92], In order to fracture an unstressed bond which, in the absence of any vibration, is approximated by the Morse potential of Fig. 18, an energy D must be supplied. If, however, the bond is under tension due to a constant force feitt pulling on either end, the bond rupture activation energy will be decreased by an amount equivalent to the work performed by the mechanical force over the stretching distance from the equilibrium position. The bond potential energy in the presence of stress is given by ... [Pg.109]

FIGURE 1-9 Free energy curve for a redox process at a potential more positive than the equilibrium value. [Pg.16]

The isotopic difference between the mean squares of the displacements in equation (7) can be calculated if the carbon-hydrogen oscillator is treated as a diatomic molecule. It is easily shown that for constant potential the mean square of the displacement from the equilibrium position of the harmonic oscillator will be inversely proportional to the square root of the reduced mass, /x, and hence... [Pg.9]

The laser intensities are taken to be the possible lowest. The intensity in case (b) is almost three times larger than the others. This is simply due to the fact that the transition dipole moment exponentially decays from the equilibrium position and also the potential energy difference increases. Note again that the coordinate-dependent level approximation works well. In order to demonstrate the selectivity the time evolution of the wave packets on the excited state are shown in Fig 41. As a measure of the selectivity, we have calculated the target yield by... [Pg.170]

Figure 41. Selective bond breaking of H2O by means of the quadratically chirped pulses with the initial wave packets described in the text. The dynamics of the wavepacket moving on the excited potential energy surface is illustrated by the density, (a) The initail wave packet is the ground vibrational eigen state at the equilibrium position, (b) The initial wave packet has the same shape as that of (a), but shifted to the right, (c) The initail wave packet is at the equilibrium position but with a directed momentum toward x direction. Taken from Ref. [37]. (See color insert.)... Figure 41. Selective bond breaking of H2O by means of the quadratically chirped pulses with the initial wave packets described in the text. The dynamics of the wavepacket moving on the excited potential energy surface is illustrated by the density, (a) The initail wave packet is the ground vibrational eigen state at the equilibrium position, (b) The initial wave packet has the same shape as that of (a), but shifted to the right, (c) The initail wave packet is at the equilibrium position but with a directed momentum toward x direction. Taken from Ref. [37]. (See color insert.)...
Molecules possess discrete levels of rotational and vibrational energy. Transitions between vibrational levels occur by absorption of photons with frequencies v in the infrared range (wavelength 1-1000 p,m, wavenumbers 10,000-10 cm , energy differences 1240-1.24 meV). The C-0 stretch vibration, for example, is at 2143 cm . For small deviations of the atoms in a vibrating diatomic molecule from their equilibrium positions, the potential energy V(r) can be approximated by that of the harmonic oscillator ... [Pg.155]

The harmonic approximation is only valid for small deviations of the atoms from their equilibrium positions. The most obvious shortcoming of the harmonic potential is that the bond between two atoms can not break. With physically more realistic potentials, such as the Lennard-Jones or the Morse potential, the energy levels are no longer equally spaced and vibrational transitions with An > 1 are no longer forbidden. Such transitions are called overtones. The overtone of gaseous CO at 4260 cm (slightly less than 2 x 2143 = 4286 cm ) is an example. [Pg.156]

Many attempts to estimate x on the basis of different nonthermody-namic assumptions have shown that the value of this potential is positive and that it is comparatively small. According to subsequent estimates by Frumkin, Randles, and Trasatti x is equal to +0.1, +0.08 0.06, and +0.13 V, respectively. Dynamic experiments have confirmed this order of value. The time of establishing the equilibrium value has been found to be about 3 ms. [Pg.44]

For thermodynamic reasons, an electrochemical reaction can occur only within a dehnite region of potentials a cathodic reaction at electrode potentials more negative, an anodic reaction at potentials more positive than the equilibrium potential of that reaction. This condition only implies a possibility that the electrode reaction will occur in the corresponding region of potentials it provides no indication of whether the reaction will actually occur, and if so, what its rate will be. The answers are provided not by thermodynamics but by electrochemical kinetics. [Pg.79]

In very thin (nanometer) films, where the potential gradient may exceed 10 V/m, another mechanism of ion migration is observed, which involves periodic jumps of ions between equilibrium positions, hi this case, the rate of migration is not proportional to the potential gradient but obeys the exponential law... [Pg.304]

Underpotential Deposition of Metal Atoms Because of the energy of interaction between a foreign substrate and the adsorbed metal atoms formed by discharge, cathodic discharge of a limited amount of metal ions producing adatoms is possible at potentials more positive than the equilibrium potential of the particular system, and also more positive than the potential of steady metal deposition. [Pg.310]


See other pages where Potentials equilibrium position is mentioned: [Pg.16]    [Pg.18]    [Pg.18]    [Pg.21]    [Pg.21]    [Pg.1062]    [Pg.2224]    [Pg.593]    [Pg.98]    [Pg.100]    [Pg.8]    [Pg.92]    [Pg.26]    [Pg.90]    [Pg.112]    [Pg.126]    [Pg.1270]    [Pg.35]    [Pg.784]    [Pg.9]    [Pg.143]    [Pg.175]    [Pg.99]    [Pg.264]   
See also in sourсe #XX -- [ Pg.174 , Pg.182 , Pg.186 ]




SEARCH



Equilibrium position

Equilibrium potentials

Positive plate equilibrium potentials

Positive potential

© 2024 chempedia.info