Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction paths, potential energy surfaces

To calculate N (E-Eq), the non-torsional transitional modes have been treated as vibrations as well as rotations [26]. The fomier approach is invalid when the transitional mode s barrier for rotation is low, while the latter is inappropriate when the transitional mode is a vibration. Hamionic frequencies for the transitional modes may be obtained from a semi-empirical model [23] or by perfomiing an appropriate nomial mode analysis as a fiinction of the reaction path for the reaction s potential energy surface [26]. Semiclassical quantization may be used to detemiine anliamionic energy levels for die transitional modes [27]. [Pg.1016]

Molecular mechanics methods are not generally applicable to structures very far from equilibrium, such as transition structures. Calculations that use algebraic expressions to describe the reaction path and transition structure are usually semiclassical algorithms. These calculations use an energy expression fitted to an ah initio potential energy surface for that exact reaction, rather than using the same parameters for every molecule. Semiclassical calculations are discussed further in Chapter 19. [Pg.53]

The reaction coordinate is one specific path along the complete potential energy surface associated with the nuclear positions. It is possible to do a series of calculations representing a grid of points on the potential energy surface. The saddle point can then be found by inspection or more accurately by using mathematical techniques to interpolate between the grid points. [Pg.155]

Molecular dynamics studies can be done to examine how the path and orientation of approaching reactants lead to a chemical reaction. These studies require an accurate potential energy surface, which is most often an analytic... [Pg.167]

Rather than using transition state theory or trajectory calculations, it is possible to use a statistical description of reactions to compute the rate constant. There are a number of techniques that can be considered variants of the statistical adiabatic channel model (SACM). This is, in essence, the examination of many possible reaction paths, none of which would necessarily be seen in a trajectory calculation. By examining paths that are easier to determine than the trajectory path and giving them statistical weights, the whole potential energy surface is accounted for and the rate constant can be computed. [Pg.168]

In the chapter on reaction rates, it was pointed out that the perfect description of a reaction would be a statistical average of all possible paths rather than just the minimum energy path. Furthermore, femtosecond spectroscopy experiments show that molecules vibrate in many dilferent directions until an energetically accessible reaction path is found. In order to examine these ideas computationally, the entire potential energy surface (PES) or an approximation to it must be computed. A PES is either a table of data or an analytic function, which gives the energy for any location of the nuclei comprising a chemical system. [Pg.173]

MEP (IRC, intrinsic reaction coordinate, minimum-energy path) the lowest-energy route from reactants to products in a chemical process MIM (molecules-in-molecules) a semiempirical method used for representing potential energy surfaces... [Pg.365]

The potential energy surface consists of two valleys separated by a col or saddle. The reacting system will tend to follow a path of minimum potential energy in its progress from the initial state of reactants (A + BC) to the final state of products (AB -F C). This path is indicated by the dashed line from reactants to products in Fig. 5-2. This path is called the reaction coordinate, and a plot of potential energy as a function of the reaction coordinate is called a reaction coordinate diagram. [Pg.192]

Theoretical predictions of potential energy surfaces and reaction paths can sometimes yield quite surprising results. In this section, we ll consider an example which illustrates the general approach toward and usefulness of studying potential energy surfaces in detail. [Pg.169]

An IRC calculation examines the reaction path leading down from a transition structure on a potential energy surface. Such a calculation starts at the saddle point and follows the path in both directions from the transition state, optimizing the geometry of the molecular system at each point along the path. In this way, an IRC calculation definitively connects two minima on the potential energy surface by a path which passes through the transition state between them. [Pg.173]

We ll now use Gaussian s reaction path following facility to explore the H CO potential energy surface. There are many minima on this surface—including... [Pg.175]

The entries in the table are arranged in order of increasing reaction coordinate or distance along the reaction path (the reaction coordinate is a composite variable spanning all of the degrees of freedom of the potential energy surface). The energy and optimized variable values are listed for each point (in this case, as Cartesian coordinates). The first and last entries correspond to the final points on each side of the reaction path. [Pg.177]

We have already considered two reactions on the H2CO potential energy surface. In doing so, we studied five stationary points three minima—formaldehyde, trans hydroxycarbene, and carbon monoxide plus hydrogen molecule—and the two transition structures connecting formaldehyde with the two sets of products. One obvious remaining step is to find a path between the two sets of products. [Pg.191]

Part 3, Applications, begins with Chapter 8, Studying Chemical Reactions and Reactivity, which discusses using electronic structure theory to investigate chemical problems. It includes consideration of reaction path features to investigate the routes between transition structures and the equilibrium structures they connect on the reaction s potential energy surface. [Pg.317]

A minimum on a potential energy surface represents an equilibrium stracture. There will invariably be a number of such local minima, and we can imagine a number of paths on the surface that connect one particular minimum to another. If the highest-energy point on each path is considered, the transition structure can be defined as the lowest of these maxima. The reaction path is the lowest-energy route between two minima. [Pg.234]

Should a complete potential energy surface be subjected to outer and inner effects, then a new potential energy surface is obtained on which the corresponding rection paths can be followed. This is described in part 4.3.1 by the example of the potential energy surface of the system C2H5+ jC2H4 under solvent influence. After such calculations, reaction theory assertions concerning the reaction path and the similarity between the activated complex and educts or products respectively can be made. [Pg.193]

After 28 years the perepoxide quasi-intermediate was supported by a two-step no intermediate mechanism [71, 72]. The minimum energy path on the potential energy surface of the reaction between singlet molecular oxygen ( A and dg-teramethylethylene reaches a vaUey-ridge inflection point and then bifurcates leading to the two final products [73]. [Pg.38]


See other pages where Reaction paths, potential energy surfaces is mentioned: [Pg.190]    [Pg.193]    [Pg.190]    [Pg.193]    [Pg.353]    [Pg.32]    [Pg.442]    [Pg.307]    [Pg.390]    [Pg.452]    [Pg.246]    [Pg.870]    [Pg.62]    [Pg.46]    [Pg.154]    [Pg.166]    [Pg.46]    [Pg.307]    [Pg.233]    [Pg.455]    [Pg.201]    [Pg.211]    [Pg.221]    [Pg.169]    [Pg.173]    [Pg.225]    [Pg.370]    [Pg.36]    [Pg.308]    [Pg.370]    [Pg.684]    [Pg.193]    [Pg.218]    [Pg.39]    [Pg.15]   
See also in sourсe #XX -- [ Pg.141 , Pg.150 , Pg.152 , Pg.156 , Pg.159 , Pg.172 , Pg.183 , Pg.185 , Pg.186 , Pg.190 , Pg.191 , Pg.194 , Pg.195 ]




SEARCH



Cartesian coordinates, reaction paths potential energy surfaces

Energy path

Potential Energy Surface Molecular Structure, Transition States, and Reaction Paths

Potential energy reaction

Potential energy surface multiple reaction paths

Potential energy surfaces reaction paths, calculation

Potential energy surfaces surface atom reaction paths

Reaction energy surface

Reaction path

Reaction paths, potential energy surfaces bifurcations

Reaction paths, potential energy surfaces dynamics

Reaction paths, potential energy surfaces examples

Reaction paths, potential energy surfaces limitations

Reaction paths, potential energy surfaces principles

Reaction paths, potential energy surfaces solution reactions

Reaction potential surface

Steepest descent reaction paths, potential energy surfaces

Surface path

Surface reaction path

Trajectory calculations, reaction path potential energy surfaces

© 2024 chempedia.info