Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium pinacolate

During the enantioselective total synthesis of (-)-coriolin, I. Kuwajima and co-workers used a Darzens-type reaction to construct the spiro epoxide moiety on the triquinane skeleton. Interestingly, the usual Darzens condensation where the a-bromoketone was condensed with paraformaldehyde yielded a bromohydrin in which the hydroxymethyl group was introduced from the concave face of the molecule. This bromohydrin upon treatment with DBU gave the undesired stereochemistry at C3 (found in 3-ep/-coriolin). To obtain the correct stereochemistry at C3, the substituents were introduced in a reverse manner. It was also necessary to enhance the reactivity of the enolate with potassium pinacolate by generating a labile potassium enolate in the presence of NIS. The in situ formed iodohydrin, then cyclized to the spiro epoxide having the desired stereochemistry at C3. [Pg.129]

Base catalyzed pinacol rearrangement of vicinal m-glycol monotosylates is a simple and useful general method for preparing perhydroazulenes. Thus, treatment of cholestane-5a,6a-diol 6-tosylate (115a) with either one mole-equivalent of potassium t-butoxide in f-butanol at 25° or with calcium carbonate in dimethylformamide at 100° gives a quantitative yield of 10(5 6/5H)... [Pg.392]

A simple and direct approach to 10(5 4j H)<2Z)eo-5-lceto derivatives lacking functionality in ring A is the controlled pinacol rearrangement of vicinal cw-diols analogous to the process described in the previous section. An example is the reaction of cholestane-4a,5a-diol 4-tosylate (136) with 1 mole-equivalent of potassium t-butoxide or with dimethylforraamide-calcium carbonate at reflux which gives a quantitative yield of Q(5ApH)abeo-cholestan-5-one (137). ... [Pg.398]

A solution of potassium naphthalenide is prepared from 2.0 g (50 mmol) of potassium and 6.4 g (50 mmol) of naphthalene in 40 mL ofTHF. After 1 h at r.t. this mixture is diluted with 10 mL of diethyl ether and 10 mL of petroleum ether (bp 40-60 °C) and cooled to — 120 °C. 4.5 g (25 mmol) of ( )-l-methoxy-3-phenylthio-1-propcne arc added followed by 3.36 g (25 mmol) of chlorobis(l-dimethylamino)borane. This mixture is allowed to warm to r.t. over 3 h the solvents are removed in vacuo and the residue is carefully distilled through a 5-cm column at 10 2 Torr. The distillate, containing also naphthalene, is dissolved in 30 mL of diethyl ether and treated with 2.95 g (25 mmol) of pinacol for 3 h. The crude product is chromatographed over 30 g of basic alumina (activity 1) using petroleum ether (bp 40 -60°C) giving 9.2 g of a mixture of product and naphthalene the yield of product (89% E) is determined to be 60% by H-NMR analysis. Similarly prepared is ... [Pg.268]

A. 1,1-Dibromo-2,2-bis(chloromethyl)cyclopropane (1). Into a 1-L, threenecked, round-bottomed flask, equipped with an efficient mechanical stirrer, a thermometer, and a condenser equipped with a potassium hydroxide drying tube, are placed 54.1 g (0.403 mol) of 3-chloro-2-(chloromethyl)propene (Note 1), 212 g (0.805 mol) of bromoform (Note 2), 1.70-2.00 g (14.4-16.9 mmol) of pinacol (Note 3), and 1.45 g (3.94 mmol) of dibenzo-18-crown-6 (Note 4). With very vigorous stirring (Note 5), 312 g of an aqueous 50% sodium hydroxide solution that has been cooled to 15°C is added in one portion. The reaction mixture turns orange, then brown, then black within 5 min, and the temperature of the reaction mixture begins to rise. Within 20 min, the internal reaction temperature is 49-50°C at which point the reaction flask is cooled with a room-temperature water bath, and the reaction temperature decreases to ca. [Pg.50]

An interesting deoxygenation of ketones takes place on treatment with low valence state titanium. Reagents prepared by treatment of titanium trichloride in tetrahydrofuran with lithium aluminum hydride [205], with potassium [206], with magnesium [207], or in dimethoxyethane with lithium [206] or zinc-copper couple [206,209] convert ketones to alkenes formed by coupling of the ketone carbon skeleton at the carbonyl carbon. Diisopropyl ketone thus gave tetraisopropylethylene (yield 37%) [206], and cyclic and aromatic ketones afforded much better yields of symmetrical or mixed coupled products [206,207,209]. The formation of the alkene may be preceded by pinacol coupling. In some cases a pinacol was actually isolated and reduced by low valence state titanium to the alkene [206] (p. 118). [Pg.109]

The LIC-KOR reagent consisting of stoichiometrically equal amounts of butyllithium ( LIC ) and potassium feri-butoxide ( KOR ) was conceived in Heidelberg and optimized in a trial-and-error effort . The fundamental idea was simple. To activate butyllithium optimally by deaggregation and carbon-metal bond polarization, a ligand was required that would surpass as an electron donor any crown ether but not suffer from the drawback of the latter, i.e. its proneness to /3-elimination. Whereas pinacolates and other v/c-diolates proved too labile to be generally useful, potassium terf-butoxide or any other bulky, hence relatively soluble, potassium or cesium alkoxide was found to serve the purpose. ... [Pg.457]

This sequence bears an interesting resemblance to a one-step couphng reaction developed many decades later, a transform that would seem apphcable to the synthesis of DES if that were still an important drug. Thus, treatment of acetophenone (4-1) with titanium trichloride has been demonstrated to yield initially the pinacol product (4-2) if a reducing agent such as potassium metal is present, the glycol is eliminated to form a double bond. The product (4-3) consists predominantly ( 90%) of the tmns isomer [4]. [Pg.193]

While norbornene, norbornadiene, 2-triallkylsilylnorbornadiene, and 1,3,5-cycloheptatriene are selectively deprotonated by the LIC-NAOR mixture (butyllithium/sodium /f 7-butoxide), other less acidic substrates such as bicyclo[2.2.2]oct-2-ene, camphene, 3,3-dimethyl-l-butene, and tro/o-dicyclopentadiene require the use of stronger bases constituted by mixtures of pentylsodium/disodium pinacolate (NAC-NAOR) or pentylsodium/ potassium ftrt-butoxide (NAC-KOR). [Pg.6]

Lewis acids and Bu4NI catalyzed allylboration with potassium allyl- and crotyltrifluoroborates (Equation (154)).30,40 620,621 The reaction of pinacol ester derivatives was very slow even at room temperature, but Sc(OTf)3 smoothly catalyzed the addition at — 78 °C with high diastereoselectivity (Equation (155)622 and (156)623,624). A palladium pincer complex catalyzed the addition of trifluoroborate to tosylimines (Equation (157)).625... [Pg.197]


See other pages where Potassium pinacolate is mentioned: [Pg.509]    [Pg.509]    [Pg.149]    [Pg.93]    [Pg.463]    [Pg.666]    [Pg.23]    [Pg.61]    [Pg.15]    [Pg.159]    [Pg.165]    [Pg.166]    [Pg.179]    [Pg.43]    [Pg.150]    [Pg.327]    [Pg.204]    [Pg.25]    [Pg.89]    [Pg.251]    [Pg.254]    [Pg.261]    [Pg.95]    [Pg.16]    [Pg.59]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Pinacol

Pinacolate

Pinacolation

Pinacolizations

Pinacols

© 2024 chempedia.info