Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium permanganate, preparation

Colourless prisms m.p. 130 C. Manufactured by treating maleic anhydride with water. It is converted to the anhydride by heating at By prolonged heating at 150 "C or by heating with water under pressure at 200 C, it is converted to the isomeric (trans) fumaric acid. Reduced by hydrogen to succinic acid. Oxidized by alkaline solutions of potassium permanganate to mesotartaric acid. When heated with solutions of sodium hydroxide at 100 C, sodium( )-malate is formed. Used in the preparation of ( )-malic acid and in some polymer formulations. [Pg.247]

Preparation of the sulphones. Dissolve the 2 4-dinitrophenyl-sulphide in the minimum volume of warm glacial acetic acid and add 3 per cent, potassium permanganate solution with shaking as fast as decolourisation occurs. Use a 50 per cent, excess of potassium permanganate if the sulphide tends to precipitate, add more acetic acid. Just decolourise the solution with sulphur dioxide (or with sodium bisulphite or alcohol) and add 2-3 volumes of crushed ice. Filter off the sulphone, dry, and recrystaUise from alcohol. [Pg.501]

Nicotinic acid is prepared in good tdeld by the oxidation of p picollne with potassium permanganate ... [Pg.848]

Perfluoroepoxides have also been prepared by anodic oxidation of fluoroalkenes (39), the low temperature oxidation of fluoroalkenes with potassium permanganate (40), by addition of difluorocarbene to perfluoroacetyl fluoride (41) or hexafluoroacetone (42), epoxidation of fluoroalkenes with oxygen difluoride (43) or peracids (44), the photolysis of substituted l,3-dioxolan-4-ones (45), and the thermal rearrangement of perfluorodioxoles (46). [Pg.304]

Chemical Properties. The most significant chemical property of L-ascorbic acid is its reversible oxidation to dehydro-L-ascorbic acid. Dehydro-L-ascorbic acid has been prepared by uv irradiation and by oxidation with air and charcoal, halogens, ferric chloride, hydrogen peroxide, 2,6-dichlorophenolindophenol, neutral potassium permanganate, selenium oxide, and many other compounds. Dehydro-L-ascorbic acid has been reduced to L-ascorbic acid by hydrogen iodide, hydrogen sulfide, 1,4-dithiothreitol (l,4-dimercapto-2,3-butanediol), and the like (33). [Pg.13]

The reaction mixture is filtered. The soHds containing K MnO are leached, filtered, and the filtrate composition adjusted for electrolysis. The soHds are gangue. The Cams Chemical Co. electrolyzes a solution containing 120—150 g/L KOH and 50—60 g/L K MnO. The cells are bipolar (68). The anode side is monel and the cathode mild steel. The cathode consists of small protmsions from the bipolar unit. The base of the cathode is coated with a corrosion-resistant plastic such that the ratio of active cathode area to anode area is about 1 to 140. Cells operate at 1.2—1.4 kA. Anode and cathode current densities are about 85—100 A/m and 13—15 kA/m, respectively. The small cathode areas and large anode areas are used to minimize the reduction of permanganate at the cathode (69). Potassium permanganate is continuously crystallized from cell Hquors. The caustic mother Hquors are evaporated and returned to the cell feed preparation system. [Pg.78]

Since the pyridazine ring is generally more stable to oxidation than a benzene ring, oxidation of alkyl and aryl substituted cinnolines and phthalazines can be used for the preparation of pyridazinedicarboxylic acids. For example, oxidation of 4-phenylcinnoline with potassium permanganate yields 5-phenylpyridazine-3,4-dicarboxylic acid, while alkyl substituted phthalazines give pyridazine-4,5-dicarboxylic acids under essentially the same reaction conditions. [Pg.31]

Various 6- and 7-methyl- and 6,7-dimethyl-pteridines bearing either oxo or amino groups in the 2- and 4-positions can be oxidized to the corresponding carboxylic acids by alkaline potassium permanganate on heating. Various lumazine and pterin mono- and di-carboxylic acids have been prepared in this way (48JA3026, 78CB3790). [Pg.302]

Butyroin has been prepared by reductive condensation of ethyl butyrate with sodium in xylene, or with sodium in the presence of chloro-trimethylsilane. and by reduction of 4,5-octanedlone with sodium l-benzyl-3-carbamoyl-l,4-dihydropyridine-4-sulfinate in the presence of magnesium chloride or with thiophenol in the presence of iron polyphthalocyanine as electron transfer agent.This acyloin has also been obtained by oxidation of (E)-4-octene with potassium permanganate and by reaction of... [Pg.174]

The purification of diethyl ether (see Chapter 4) is typical of liquid ethers. The most common contaminants are the alcohols or hydroxy compounds from which the ethers are prepared, their oxidation products (e.g. aldehydes), peroxides and water. Peroxides, aldehydes and alcohols can be removed by shaking with alkaline potassium permanganate solution for several hours, followed by washing with water, concentrated sulfuric acid [CARE], then water. After drying with calcium chloride, the ether is distilled. It is then dried with sodium or with lithium aluminium hydride, redistilled and given a final fractional distillation. The drying process should be repeated if necessary. [Pg.65]

Note that the acetonitrile oxide cyclooligomers (e.g. 13) are not true oxime derivatives. Such derivatives have been prepared from biacetyl, however . Derivatives related to 14, below, were prepared and found not to be good complexing agents. They were, nevertheless, capable of phase transferring either sodium or potassium permanganate into dichloromethane. [Pg.164]

Codeinone, CjaHijOgN. This ketone (XLVII) corresponds to the secondary alcohol codeine and its stereoisomeride wocodeine. It may be prepared by oxidising codeine with potassium permanganate in acetone or with potassium dichromate in dilute sulphuric acid and in various other ways. Codeinone can be reduced to codeine electrolytically or by chemical methods. It crystallises from alcohol in prisms, m.p. 185-6, [a]J, ° — 205° (EtOH). The hydrochloride, B. HCl. HjO, has m.p. 179-80°, picrate, m.p. 205°, methiodide, B. CHjI. 2H2O, m.p. 180°. [Pg.245]


See other pages where Potassium permanganate, preparation is mentioned: [Pg.399]    [Pg.52]    [Pg.316]    [Pg.399]    [Pg.52]    [Pg.316]    [Pg.11]    [Pg.21]    [Pg.165]    [Pg.167]    [Pg.203]    [Pg.422]    [Pg.186]    [Pg.183]    [Pg.355]    [Pg.450]    [Pg.553]    [Pg.672]    [Pg.848]    [Pg.470]    [Pg.444]    [Pg.507]    [Pg.515]    [Pg.388]    [Pg.338]    [Pg.377]    [Pg.78]    [Pg.262]    [Pg.155]    [Pg.265]    [Pg.38]    [Pg.195]    [Pg.233]    [Pg.279]    [Pg.280]    [Pg.353]    [Pg.410]    [Pg.543]    [Pg.617]    [Pg.428]   
See also in sourсe #XX -- [ Pg.93 ]

See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Permanganates potassium permanganate

Permanganates preparations

Potassium permanganate

Potassium permanganate, preparation reduction

Potassium preparation

© 2024 chempedia.info