Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium enzyme

Optional chemical treatments include potassium thiocyanate [333-20-0] for FIX and acid/enzyme treatment for IgG (iv). [Pg.528]

Potassium is required for enzyme activity in a few special cases, the most widely studied example of which is the enzyme pymvate kinase. In plants it is required for protein and starch synthesis. Potassium is also involved in water and nutrient transport within and into the plant, and has a role in photosynthesis. Although sodium and potassium are similar in their inorganic chemical behavior, these ions are different in their physiological activities. In fact, their functions are often mutually antagonistic. For example, increases both the respiration rate in muscle tissue and the rate of protein synthesis, whereas inhibits both processes (42). [Pg.536]

Enzymes as Antidotes. Rhodanese [9026-04-4] given along with thiosulfate to counteract cyanide poisoning in mice (224) was the first enzyme used as an antidote. This combination raised the LD q of potassium cyanide in mice by eightfold (224). [Pg.312]

An amount of enzyme preparation equivalent to 900 mg of wet cells was made up to 25 ml with the above potassium phosphate buffer solution. 150 mg (1.15 mmol) of 5-fluorouracil and 1.0 gram of thymidine (4.12 mmol) were dissolved in 15 ml of the above potassium phosphate buffer solution. The mixture was incubated at 37°C for 18 hours. After this time, enzyme action was stopped by the addition of four volumes of acetone and one volume of peroxide-free diethyl ether. The precipitated solids were removed by filtration, and the filtrate was evaporated under nitrogen at reduced pressure until substantially all volatile organic solvent had been removed. About 20 ml of aqueous solution, essentially free of organic solvent, remained. This solution was diluted to 100 ml with distilled water. [Pg.651]

Fig. 5. Tentative mixed potential model for the sodium-potassium pump in biological membranes the vertical lines symbolyze the surface of the ATP-ase and at the same time the ordinate of the virtual current-voltage curves on either side resulting in different Evans-diagrams. The scale of the absolute potential difference between the ATP-ase and the solution phase is indicated in the upper left comer of the figure. On each side of the enzyme a mixed potential (= circle) between Na+, K+ and also other ions (i.e. Ca2+ ) is established, resulting in a transmembrane potential of around — 60 mV. This number is not essential it is also possible that this value is established by a passive diffusion of mainly K+-ions out of the cell at a different location. This would mean that the electric field across the cell-membranes is not uniformly distributed. Fig. 5. Tentative mixed potential model for the sodium-potassium pump in biological membranes the vertical lines symbolyze the surface of the ATP-ase and at the same time the ordinate of the virtual current-voltage curves on either side resulting in different Evans-diagrams. The scale of the absolute potential difference between the ATP-ase and the solution phase is indicated in the upper left comer of the figure. On each side of the enzyme a mixed potential (= circle) between Na+, K+ and also other ions (i.e. Ca2+ ) is established, resulting in a transmembrane potential of around — 60 mV. This number is not essential it is also possible that this value is established by a passive diffusion of mainly K+-ions out of the cell at a different location. This would mean that the electric field across the cell-membranes is not uniformly distributed.
Potassium the prindpal inorganic cation cofactor for some enzymes. [Pg.365]

Hyperkalemia is an excess of potassium in the blood. Clinical symptoms are muscle weakness and cardiac arrhythmias. It is caused by, e.g., hyperaldosteronism and angiotensin-converting enzyme (ACE) inhibitors. [Pg.607]

The kidney contains the major site of renin synthesis, the juxtaglomerular cells in the wall of the afferent arteriole. From these cells, renin is secreted not only into the circulation but also into the renal interstitium. Moreover, the enzyme is produced albeit in low amounts by proximal tubular cells. These cells also synthesize angiotensinogen and ACE. The RAS proteins interact in the renal interstitium and in the proximal tubular lumen to synthesize angiotensin II. In the proximal tubule, angiotensin II activates the sodium/hydrogen exchanger (NHE) that increases sodium reabsorption. Aldosterone elicits the same effect in the distal tubule by activating epithelial sodium channels (ENaC) and the sodium-potassium-ATPase. Thereby, it also induces water reabsotption and potassium secretion. [Pg.1067]

Carbonic anhydrase is an enzyme that produces free hydrogen ions, which are then exchanged for sodium ions in the kidney tubules. Carbonic anhydrase inhibitors inhibit the action of the enzyme carbonic anhydrase This effect results in the excretion of sodium, potassium, bicarbonate, and water. Carbonic anhydrase inhibitors also decrease the production of aqueous humor in the eye, which in turn decreases intraocular pressure (IOP) (ie, the pressure within the eye). [Pg.446]

COX-2 enzymes, 183, 184 COX-3 enzymes, 183 cream, 130, 212 cream of tartar. See potassium... [Pg.251]

Racemic hydantoins result from the reaction of carbonyl compounds with potassium cyanide and ammonium carbonate or the reaction of the corresponding cyanohydrins with ammonium carbonate (Bucherer-Bergs reaction). Hydantoins racemize readily under basic conditions or in the presence of hydantoin racemase, thus allowing DKR (Figure 6.43). Hydantoinases (EC 3.5.2.2), either isolated enzymes or whole microorganisms, catalyze the hydrolysis of five-substituted... [Pg.149]

Dihydroxybenzoate decarboxylase activity of these bacteria was induced specifically by 2,6-dihydroxybenzoate. The enzyme activity in a cell-free extract of A. tumefaciens 1AM 12048 was stable during storage at 4°C for 7 days in potassium phosphate buffer (pH 7.0) containing 1 mM dithiothreitol. Different from 4-hydroxybenzoate decarboxylase and 3,4-dihydroxybenzoate decarboxylase, 2,6-dihydroxybenzoate decarboxylase was much less labile and barely... [Pg.91]


See other pages where Potassium enzyme is mentioned: [Pg.303]    [Pg.296]    [Pg.582]    [Pg.171]    [Pg.582]    [Pg.303]    [Pg.296]    [Pg.582]    [Pg.171]    [Pg.582]    [Pg.212]    [Pg.361]    [Pg.373]    [Pg.250]    [Pg.297]    [Pg.28]    [Pg.290]    [Pg.279]    [Pg.272]    [Pg.704]    [Pg.237]    [Pg.171]    [Pg.150]    [Pg.809]    [Pg.1026]    [Pg.1166]    [Pg.126]    [Pg.449]    [Pg.642]    [Pg.192]    [Pg.446]    [Pg.173]    [Pg.269]    [Pg.187]    [Pg.275]    [Pg.275]    [Pg.233]    [Pg.363]    [Pg.171]    [Pg.86]    [Pg.87]    [Pg.92]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Potassium ion activation of enzymes

© 2024 chempedia.info