Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium crustal abundance

Iron was chosen as the reference element because its major source is likely to be soil and it is measured with good accuracy and precision by FIXE. Crustal abundances were taken from Mason (21). Enrichment factors greater than 1 indicate an enrichment of that element relative to crustal abundances values less than 1 indicate a depletion. The results of this calculation are shown in Table 4. For this calculation it was assumed that ammonium and nitrate accounted for all aerosol nitrogen. It is seen that Si and Ca are near their crustal abundance, indicating a probable soil dust source. The low EF for Al is probably due to a systematic error in the Al measurement rather than a true depletion. Potassium, although present in small concentrations, is slightly enriched relative to crust. The other fine aerosol species, C, N, S, and Pb are enriched by factors of thousands over their natural crustal abundance, indicating that they are not due to wind-blown dust. [Pg.138]

Lithium is a soft, silvery alkali metal and has the lowest density of any metal. The word lithium is derived from lithos (Greek for stone ). Johan A. Arfredson discovered lithinm in Stockholm, Sweden, in 1817. Hnmphry Davy isolated it via electrolysis in 1818. Currently, lithinm metal is generated by the electrolysis of a molten mixture of lithium chloride, LiCl, and potassium chloride, KCl. In natnre it is never found in its elemental form. Its main sources are the minerals spodumene, petalite, lepidolite, and am-blygonite. Lithium s average crustal abundance is about 18 ppm. It has the highest specific heat of any solid element and is the least reactive alkali metal toward water. Lithium bums crimson in the flame test. [Pg.747]

Sodium, 22 700 ppm (2.27%) is the seventh most abundant element in crustal rocks and the fifth most abundant metal, after Al, Fe, Ca and Mg. Potassium (18 400 ppm) is the next most abundant element after sodium. Vast deposits of both Na and K salts occur in relatively pure form on all continents as a result of evaporation of ancient seas, and this process still continues today in the Great Salt Lake (Utah), the Dead Sea and elsewhere. Sodium occurs as rock-salt (NaCl) and as the carbonate (trona), nitrate (saltpetre), sulfate (mirabilite), borate (borax, kemite), etc. Potassium occurs principally as the simple chloride (sylvite), as the double chloride KCl.MgCl2.6H2O (camallite) and the anhydrous sulfate K2Mg2(S04)3 (langbeinite). There are also unlimited supplies of NaCl in natural brines and oceanic waters ( 30kgm ). Thus, it has been calculated that rock-salt equivalent to the NaCl in the oceans of the world would occupy... [Pg.69]

Rehnements of the Taylor and McLennan (1985) model are provided by McLennan and Taylor (1996) and McLennan (2001b). The latter is a modihcation of several trace-element abundances in the upper crust and as such, should not affect their compositional model for the bulk crust, which does not rely on their upper crustal composition. Nevertheless, McLennan (2001b) does provide modihed bulk-crust estimates for niobium, rubidium, caesium, and tantalum (and these are dealt with in the footnotes of Table 9). McLennan and Taylor (1996) revisited the heat-flow constraints on the proportions of mahc and felsic rocks in the Archean crust and revised the proportion of Archean-aged crust to propose a more evolved bulk crust composition. This revised composition is derived from a mixture of 60% Archean cmst (which is a 50 50 mixture of mahc and felsic end-member lithologies), and 40% average-andesite cmst of Taylor (1977). McLennan and Taylor (1996) focused on potassium, thorium, and uranium, and did not provide amended values for other elements, although other incompatible elements will be higher (e.g., rubidium, barium, LREEs) and compatible elements lower in a cmst composition so revised. [Pg.1313]


See other pages where Potassium crustal abundance is mentioned: [Pg.301]    [Pg.448]    [Pg.90]    [Pg.977]    [Pg.450]    [Pg.1466]    [Pg.2213]    [Pg.2499]    [Pg.84]    [Pg.977]    [Pg.342]    [Pg.346]    [Pg.30]   
See also in sourсe #XX -- [ Pg.127 ]




SEARCH



Crustal abundances

Potassium abundance

© 2024 chempedia.info