Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porphyrin structures carbon monoxide reactions

Reactions of monomeric and dimeric rhodium(II) porphyrins with carbon monoxide - As already reported in Sect. 3.3, a carbonylrhodium(II) porphyrin behaves as an acyl radical. Hence, if possible, dimerization or coupling reactions occur. Evidence for the formation of isomeric 2 1 Rh(P) CO adducts, namely a monoadduct of the dimer and a metallo ketone complex, and a dimeric 1 1 adduct in the reaction of [Rh(OEP)]2 with carbon monoxide according to sequences (38) and (39) has been presented [340,341] solution equilibria and structures have been studied essentially by lHNMR, 13CNMR, and IR spectroscopy. The first half of sequence (38) and reaction (39) occurred in parallel at CO pressures up to 12 atm at 297 K. At higher pressures, or at lower temperatures, the double-insertion of CO shown in the last step of (38) was observed. [Pg.52]

The product is exclusively carbon monoxide, and good turnover numbers are found in preparative-scale electrolysis. Analysis of the reaction orders in CO2 and AH suggests the mechanism depicted in Scheme 4.6. After generation of the iron(O) complex, the first step in the catalytic reaction is the formation of an adduct with one molecule of CO2. Only one form of the resulting complex is shown in the scheme. Other forms may result from the attack of CO2 on the porphyrin, since all the electronic density is not necessarily concentrated on the iron atom [an iron(I) anion radical and an iron(II) di-anion mesomeric forms may mix to some extent with the form shown in the scheme, in which all the electronic density is located on iron]. Addition of a weak Bronsted acid stabilizes the iron(II) carbene-like structure of the adduct, which then produces the carbon monoxide complex after elimination of a water molecule. The formation of carbon monoxide, which is the only electrolysis product, also appears in the cyclic voltammogram. The anodic peak 2a, corresponding to the reoxidation of iron(II) into iron(III) is indeed shifted toward a more negative value, 2a, as it is when CO is added to the solution. [Pg.262]


See other pages where Porphyrin structures carbon monoxide reactions is mentioned: [Pg.149]    [Pg.2112]    [Pg.2130]    [Pg.179]    [Pg.2111]    [Pg.2129]    [Pg.321]    [Pg.83]   
See also in sourсe #XX -- [ Pg.306 , Pg.307 , Pg.308 ]




SEARCH



Carbon monoxide reactions

Carbon monoxide structures

Carbon structure

Carbonate structure

Monoxide Reactions

Porphyrins structure

© 2024 chempedia.info