Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Population density balance dispersion

Hulburt and Katz (HI7) developed a framework for the analysis of particulate systems with the population balance equation for a multivariate particle number density. This number density is defined over phase space which is characterized by a vector of the least number of independent coordinates attached to a particle distribution that allow complete description of the properties of the distribution. Phase space is composed of three external particle coordinates x and m internal particle coordinates Xj. The former (Xei, x 2, A es) refer to the spatial distribution of particles. The latter coordinate properties Ocu,Xa,. . , Xt ) give a quantitative description of the state of an individual particle, such as its mass, concentration, temperature, age, etc. In the case of a homogeneous dispersion such as in a well-mixed vessel the external coordinates are unnecessary whereas for a nonideal stirred vessel or tubular configuration they may be needed. Thus (x t)d represents the number of particles per unit volume of dispersion at time t in the incremental range x, x -I- d, where x represents both coordinate sets. The number density continuity equation in particle phase space is shown to be (HI 8, R6)... [Pg.239]

Other forms of the number density equation or population balance equation are useful. For a spatially homogeneous dispersion, such as in a well-mixed vessel, with flow of dispersion and no density changes ... [Pg.240]

The population balance equation is employed to describe the temporal and steady-state behavior of the droplet size distribution for physically equilibrated liquid-liquid dispersions undergoing breakage and/or coalescence. These analyses also permit evaluation of the various proposed coalescence and breakage functions described in Sections III,B and C. When the dispersion is spatially homogeneous it becomes convenient to describe particle interaction on a total number basis as opposed to number concentration. To be consistent with the notation employed by previous investigators, the number concentration is replaced as n i,t)d i = NA( i t)dXi, where N is the total number of particles per unit volume of the dispersion, and A(xj t) dXi is the fraction of drops in increment X, to X( + dxi- For spatially homogeneous dispersions such as in a well-mixed vessel, continuous flow of dispersions, no density changes, and isothermal conditions Eq. (102) becomes... [Pg.241]

Lee et al [66] and Prince and Blanch [92] adopted the basic ideas of Coulaloglou and Tavlarides [16] formulating the population balance source terms directly on the averaging scales performing analysis of bubble breakage and coalescence in turbulent gas-liquid dispersions. The source term closures were completely integrated parts of the discrete numerical scheme adopted. The number densities of the bubbles were thus defined as the number of bubbles per unit mixture volume and not as a probability density in accordance with the kinetic theory of gases. [Pg.809]

The formulations of the population balance equation based on the continuum mechanical approach can be split into two categories, the macroscopic- and the microscopic population balance equation formulations. The macroscopic approach consists in describing the evolution in time and space of several groups or classes of the dispersed phase properties. The microscopic approach considers a continuum representation of a particle density function. [Pg.812]

In this section the population balance modeling approach established by Randolph [95], Randolph and Larson [96], Himmelblau and Bischoff [35], and Ramkrishna [93, 94] is outlined. The population balance model is considered a concept for describing the evolution of populations of countable entities like bubble, drops and particles. In particular, in multiphase reactive flow the dispersed phase is treated as a population of particles distributed not only in physical space (i.e., in the ambient continuous phase) but also in an abstract property space [37, 95]. In the terminology of Hulburt and Katz [37], one refers to the spatial coordinates as external coordinates and the property coordinates as internal coordinates. The joint space of internal and external coordinates is referred to as the particle phase space. In this case the quantity of basic interest is a density function like the average number of particles per unit volume of the particle state space. The population balance may thus be considered an equation for the number density and regarded as a number balance for particles of a particular state. [Pg.835]

The state (py, pg, pj) = (p, 0,0) is the final state, is stable, and represents a completely invaded state where all the host cells were killed producing new viruses. We are interested in studying a front of invasion connecting both states. Since lysis of bacteria results in a precipitous dechne in the culture turbidity, virus population growth produces circular clearings called plaques. The growth of these plaques in size is not only a result of the kinetics but also due to the dispersal movement of the viruses within the bacterial culture. To derive an equation for vims dispersal in agar, we start with the mesoscopic balance equation for the vims density at point x at time t obtained from Model C (see Sect. 3.4.3) [121] ... [Pg.258]

The number density function, along with the environmental phase variables, completely determines the evolution of all properties of the dispersed phase system. The population balance framework is thus an indispensable tool for dealing with dispersed phase systems. This book seeks to address the various aspects of the methodology of population balance necessary for its successful application. Thus Chapter 2 develops the mathematical framework leading to the population balance equation. It... [Pg.4]

Spielman and Levenspiel (1965) appear to have been the earliest to propose a Monte Carlo technique, which comes under the purview of this section, for the simulation of a population balance model. They simulated the model due to Curl on the effect of drop mixing on chemical reaction conversion in a liquid-liquid dispersion that is discussed in Section 3.3.6. The drops, all of identical size and distributed with respect to reactant concentration, coalesce in pairs and instantly redisperse into the original pairs (after mixing of their contents) within the domain of a perfectly stirred continuous reactor. Feed droplets enter the reactor at a constant rate and concentration density, while the resident drops wash out at the same constant rate. Reaction occurs in individual droplets in accord with nth-order kinetics. [Pg.170]


See other pages where Population density balance dispersion is mentioned: [Pg.96]    [Pg.109]    [Pg.252]    [Pg.262]    [Pg.812]    [Pg.131]    [Pg.1]    [Pg.102]    [Pg.192]    [Pg.268]    [Pg.557]    [Pg.910]    [Pg.939]    [Pg.942]    [Pg.944]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Balance dispersion

Balances density

Population balance

Population density

Population density balance

© 2024 chempedia.info