Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene. availability

In 1930 BASF, then part of IG Farhen, installed a plant for producing 100 tonnes of polystyrene per annum and in 1933 the first injection moulded articles were produced. In the US semi-plant-scale work at the Dow Chemical Company showed promise of commercial success in 1934. As a consequence there became available shortly before World War II a material of particular interest because of its good electrical insulation characteristics hut otherwise considerably inferior to the polystyrene available today. Because of these excellent electrical characteristics prices were paid of the order of several dollars per pound for these polymers. [Pg.425]

Suppose you wanted to estimate the viscosity of a polystyrene sample at 125°C using the Debye viscosity equation, but the only available value... [Pg.269]

A variety of cellular plastics exists for use as thermal iasulation as basic materials and products, or as thermal iasulation systems ia combination with other materials (see Foamed plastics). Polystyrenes, polyisocyanurates (which include polyurethanes), and phenoHcs are most commonly available for general use, however, there is increasing use of other types including polyethylenes, polyimides, melamines, and poly(vinyl chlorides) for specific appHcations. [Pg.331]

Spheres. HoUow spherical fillers have become extremely useflil for the plastics industry and others. A wide range of hoUow spherical fillers are currently available, including inorganic hoUow spheres made from glass, carbon, fly ash, alumina, and 2h conia and organic hoUow spheres made from epoxy, polystyrene, urea—formaldehyde, and phenol—formaldehyde. Although phenol—formaldehyde hoUow spheres are not the largest-volume product, they serve in some important appHcations and show potential for future use. [Pg.308]

Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ... Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ...
Poly(phenylene ether). The only commercially available thermoplastic poly(phenylene oxide) PPO is the polyether poly(2,6-dimethylphenol-l,4-phenylene ether) [24938-67-8]. PPO is prepared by the oxidative coupling of 2,6-dimethylphenol with a copper amine catalyst (25). Usually PPO is blended with other polymers such as polystyrene (see PoLYETPiERS, Aromatic). However, thermoplastic composites containing randomly oriented glass fibers are available. [Pg.38]

A commercial polystyrene supported version is available — scavanger resin (for diol substrate). [Pg.86]

A polystyrene diethylaminomethyl supported version is commercially available. [Pg.202]

A polystyrene supported version of diisopropyiamine is commercially available. [Pg.209]

Many of the most floppy polymers have half-melted in this way at room temperature. The temperature at which this happens is called the glass temperature, Tq, for the polymer. Some polymers, which have no cross-links, melt completely at temperatures above T, becoming viscous liquids. Others, containing cross-links, become leathery (like PVC) or rubbery (as polystyrene butadiene does). Some typical values for Tg are polymethylmethacrylate (PMMA, or perspex), 100°C polystyrene (PS), 90°C polyethylene (low-density form), -20°C natural rubber, -40°C. To summarise, above Tc. the polymer is leathery, rubbery or molten below, it is a true solid with a modulus of at least 2GNm . This behaviour is shown in Fig. 6.2 which also shows how the stiffness of polymers increases as the covalent cross-link density increases, towards the value for diamond (which is simply a polymer with 100% of its bonds cross-linked. Fig. 4.7). Stiff polymers, then, are possible the stiffest now available have moduli comparable with that of aluminium. [Pg.62]

In the period 1945-1955, while there was a noticeable improvement in the quality of existing plastics materials and an increase in the range of grades of such materials, few new plastics were introduced commercially. The only important newcomer was high-impact polystyrene and, at the time of its introduction, this was a much inferior material to the variants available today. [Pg.7]

In the mid-1950s a number of new thermoplastics with some very valuable properties beeame available. High-density polyethylenes produced by the Phillips process and the Ziegler process were marketed and these were shortly followed by the discovery and rapid exploitation of polypropylene. These polyolefins soon became large tonnage thermoplastics. Somewhat more specialised materials were the acetal resins, first introduced by Du Pont, and the polycarbonates, developed simultaneously but independently in the United States and Germany. Further developments in high-impact polystyrenes led to the development of ABS polymers. [Pg.8]


See other pages where Polystyrene. availability is mentioned: [Pg.1186]    [Pg.593]    [Pg.195]    [Pg.1186]    [Pg.593]    [Pg.195]    [Pg.321]    [Pg.70]    [Pg.417]    [Pg.2579]    [Pg.1109]    [Pg.652]    [Pg.469]    [Pg.405]    [Pg.405]    [Pg.198]    [Pg.199]    [Pg.331]    [Pg.308]    [Pg.493]    [Pg.507]    [Pg.44]    [Pg.517]    [Pg.101]    [Pg.231]    [Pg.463]    [Pg.481]    [Pg.74]    [Pg.121]    [Pg.195]    [Pg.260]    [Pg.303]    [Pg.336]    [Pg.336]    [Pg.343]    [Pg.493]    [Pg.621]   
See also in sourсe #XX -- [ Pg.49 ]

See also in sourсe #XX -- [ Pg.49 ]




SEARCH



Polystyrene commercially available

Polystyrene, living polymer availability

© 2024 chempedia.info