Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics polysaccharides

Dickinson, E., Semenova, M.G. (1992). Emulsifying behaviour of protein in the presence of polysaccharide under conditions of thermodynamic incompatibility. Journal of the Chemical Society, Faraday Transactions, 88, 849-854. [Pg.27]

In the field of food colloids, the use of molecular thermodynamics provides a set of qualitative and quantitative relationships describing fundamental phenomena occurring in the equilibrium state of systems for which the intermolecular interactions of biopolymers (proteins and polysaccharides) play a key role. The phenomena and processes amenable to discussion from the thermodynamic point of view are ... [Pg.79]

Let us turn now to consider systems with thermodynamically favourable interaction (A24 < 0) (i.e., mutual attraction) between protein and polysaccharide. Here there is little measurable effect on the protein loading (see Table 3.1) (Semenova et al., 1999). However, an important con-... [Pg.97]

Grinberg, V.Y., Tolstoguzov, V.B. (1997). Thermodynamic incompatibility of proteins and polysaccharides in solutions. Food Hydrocolloids, 11, 145-158. [Pg.110]

Turgeon, S.L., Beaulieu, M., Schmitt, C., Sanchez, C. (2003). Protein-polysaccharide interactions phase-ordering kinetics, thermodynamics and structural aspects. Current Opinion in Colloid and Interface Science, 8, 401 414. [Pg.113]

Figure 6.10 Effect of CITREM on the molecular and thermodynamic parameters of maltodextrin SA-2 (DE = 2) in aqueous medium (phosphate buffer, pH = 7.2, ionic strength = 0.05 M 20 °C) (a) weight average molar mass, Mw (b) radius of gyration, Ra (c) structure sensitive parameter, p, characterizing die architecture of maltodextrin associates (d) second virial coefficient, A2 or A2, on the basis of the weight ( ) and molal (A) scales, respectively. The parameter R is defined as the molar ratio of surfactant to glucose monomer units in the polysaccharide. The indicated cmc value refers to the cmc of the pure CITREM solution. Reproduced from Anokhina et al. (2007) with permission. Figure 6.10 Effect of CITREM on the molecular and thermodynamic parameters of maltodextrin SA-2 (DE = 2) in aqueous medium (phosphate buffer, pH = 7.2, ionic strength = 0.05 M 20 °C) (a) weight average molar mass, Mw (b) radius of gyration, Ra (c) structure sensitive parameter, p, characterizing die architecture of maltodextrin associates (d) second virial coefficient, A2 or A2, on the basis of the weight ( ) and molal (A) scales, respectively. The parameter R is defined as the molar ratio of surfactant to glucose monomer units in the polysaccharide. The indicated cmc value refers to the cmc of the pure CITREM solution. Reproduced from Anokhina et al. (2007) with permission.
Nowadays it is well established that the interactions between different macromolecular ingredients (i.e., protein + protein, polysaccharide + polysaccharide, and protein + polysaccharide) are of great importance in determining the texture and shelf-life of multicomponent food colloids. These interactions affect the structure-forming properties of biopolymers in the bulk and at interfaces thermodynamic activity, self-assembly, sin-face loading, thermodynamic compatibility/incompatibility, phase separation, complexation and rheological behaviour. Therefore, one may infer that a knowledge of the key physico-chemical features of such biopolymer-biopolymer interactions, and their impact on stability properties of food colloids, is essential in order to be able to understand and predict the functional properties of mixed biopolymers in product formulations. [Pg.232]

Table 7.1 shows that rather similar results were also found by Makri et al. (2005) for samples of coarse emulsions containing thermodynamically incompatible mixtures of legume seed protein + xanthan gum. The protein surface load was found to be enhanced in the presence of xanthan gum, especially at elevated ionic strengths. That is, there was observed to be an increase in the adsorption of legume seed proteins at the surface of the emulsion droplets which could be attributed to an increase in the thermodynamic activity of the proteins in the system in the presence of the incompatible polysaccharide (see Table 7.1). Associated with the greater extent of protein adsorption, the authors reported an enhancement in the emulsion stability. Table 7.1 shows that rather similar results were also found by Makri et al. (2005) for samples of coarse emulsions containing thermodynamically incompatible mixtures of legume seed protein + xanthan gum. The protein surface load was found to be enhanced in the presence of xanthan gum, especially at elevated ionic strengths. That is, there was observed to be an increase in the adsorption of legume seed proteins at the surface of the emulsion droplets which could be attributed to an increase in the thermodynamic activity of the proteins in the system in the presence of the incompatible polysaccharide (see Table 7.1). Associated with the greater extent of protein adsorption, the authors reported an enhancement in the emulsion stability.
The presence of a thermodynamically incompatible polysaccharide in the aqueous phase can enhance the effective protein emulsifying capacity. The greater surface activity of the protein in the mixed biopolymer system facilitates the creation of smaller emulsion droplets, i.e., an increase in total surface area of the freshly prepared emulsion stabilized by the mixture of thermodynamically incompatible biopolymers (see Figure 3.4) (Dickinson and Semenova, 1992 Semenova el al., 1999a Tsapkina et al., 1992 Makri et al., 2005). It should be noted, however, that some hydrocolloids do cause a reduction in the protein emulsifying capacity by reducing the protein adsorption efficiency as a result of viscosity effects. [Pg.245]

Thermodynamically unfavourable interactions between two biopolymers may produce a significant increase in the surface shear viscosity (rf) of the adsorbed protein layer. This change in surface rheological behaviour is a consequence of the greater surface concentration of adsorbed protein. For instance, with p-casein + pectin at pH = 5.5 and ionic strength = 0.01 M (Ay = 2.6 x 10 m3 mol kg-2), the surface shear viscosity at the oil-water interface was found to increase by 20-30%, i.e., rp = 750 75 and 590 60 mN s m-1 in the presence and absence of polysaccharide. These values of rp refer to data taken some 24 hours following initial protein layer formation (Dickinson et al., 1998 Semenova et al., 1999a). [Pg.245]

The presence of a thermodynamically favourable interaction between protein and polysaccharide is commonly associated with a marked decrease in protein surface activity at the air-water or oil-water interface (see Figures 7.5b and 7.15). There is a slower decay in the surface tension for complexes in comparison with the pure protein, and also higher values of the tension in the steady state. Data establishing these trends have been reported for the following biopolymer pairs in aqueous media legumin + dextran and legumin + maltodextrin (Antipova and Semenova,... [Pg.266]

Figure 7.15 Effect of thermodynamically favourable interactions between biopolymers on protein surface activity at the planar oil-water or air-water interface. The surface pressure n reached after 6 hours is plotted against the polysaccharide concentration ( ), legumin (0.001 wt%) + dextran (Mw = 270 kDa) at / -decane-water surface at pH = 7.8 and ionic strength = 0.01 M, (Ay = -0.2 x 105 cm3 mol1) (Pavlovskaya et ah, 1993) ( ), legumin (0.001 wt%) + maltodextrin (MD6, Mw = 102 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (Ay = - 0.02 x 105 cm3 mol-1) (Belyakova et ah, 1999) (A), legumin (0.001 wt%) + maltodextrin (MD10, Mw = 45 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (.1 / = - 0.08 x 105 cm3 mol-1) (Belyakova et ah, 1999). Figure 7.15 Effect of thermodynamically favourable interactions between biopolymers on protein surface activity at the planar oil-water or air-water interface. The surface pressure n reached after 6 hours is plotted against the polysaccharide concentration ( ), legumin (0.001 wt%) + dextran (Mw = 270 kDa) at / -decane-water surface at pH = 7.8 and ionic strength = 0.01 M, (Ay = -0.2 x 105 cm3 mol1) (Pavlovskaya et ah, 1993) ( ), legumin (0.001 wt%) + maltodextrin (MD6, Mw = 102 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (Ay = - 0.02 x 105 cm3 mol-1) (Belyakova et ah, 1999) (A), legumin (0.001 wt%) + maltodextrin (MD10, Mw = 45 kDa) at air-water surface at pH = 7.2 and ionic strength = 0.05 M (.1 / = - 0.08 x 105 cm3 mol-1) (Belyakova et ah, 1999).
On the basis of available data, it would appear that there are several possible reasons that may account for the observed decrease in surface activity of proteins, depending on the strengths of their thermodynamically favourable interactions with different polysaccharides. In the case of a rather weak interaction, which does not lead to the formation of a stable complex between protein and polysaccharide, the decrease in the surface activity of protein is evidently determined by the corresponding... [Pg.267]

It seems that there is probably greater availability of positively charged residues on the adsorbed protein for electrostatic interaction with sulfate groups of the anionic polysaccharide. This could lead to a greater extent of neutralization of dextran sulfate as a result of complex formation, and consequently to a lower thermodynamic affinity of the complexes for the aqueous medium and a lower value of the ( -potential for emulsion droplets in bilayer emulsions. [Pg.281]


See other pages where Thermodynamics polysaccharides is mentioned: [Pg.36]    [Pg.229]    [Pg.230]    [Pg.232]    [Pg.235]    [Pg.249]    [Pg.164]    [Pg.96]    [Pg.168]    [Pg.227]    [Pg.342]    [Pg.97]    [Pg.117]    [Pg.27]    [Pg.49]    [Pg.17]    [Pg.86]    [Pg.88]    [Pg.95]    [Pg.96]    [Pg.143]    [Pg.193]    [Pg.235]    [Pg.238]    [Pg.249]    [Pg.255]    [Pg.257]    [Pg.257]    [Pg.260]    [Pg.265]    [Pg.266]    [Pg.268]    [Pg.279]    [Pg.280]    [Pg.291]   
See also in sourсe #XX -- [ Pg.47 , Pg.48 , Pg.49 , Pg.50 , Pg.141 , Pg.142 , Pg.143 ]




SEARCH



Thermodynamics polysaccharide conformation

© 2024 chempedia.info