Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polysaccharides alkylation

Recent progress of basic and application studies in chitin chemistry was reviewed by Kurita (2001) with emphasis on the controlled modification reactions for the preparation of chitin derivatives. The reactions discussed include hydrolysis of main chain, deacetylation, acylation, M-phthaloylation, tosylation, alkylation, Schiff base formation, reductive alkylation, 0-carboxymethylation, N-carboxyalkylation, silylation, and graft copolymerization. For conducting modification reactions in a facile and controlled manner, some soluble chitin derivatives are convenient. Among soluble precursors, N-phthaloyl chitosan is particularly useful and made possible a series of regioselective and quantitative substitutions that was otherwise difficult. One of the important achievements based on this organosoluble precursor is the synthesis of nonnatural branched polysaccharides that have sugar branches at a specific site of the linear chitin or chitosan backbone [89]. [Pg.158]

Some sugar residues in bacterial polysaccharides are etherified with lactic acid. The biosynthesis of these involves C)-alkylation, by reaction with enol-pyruvate phosphate, to an enol ether (34) of pyruvic acid, followed by reduction to the (R) or (5) form of the lactic acid ether (35). The enol ether may also react in a different manner, giving a cyclic acetal (36) of pyruvic acid. [Pg.303]

Carboxymethylcellulose, polyethylene glycol Combination of a cellulose ether with clay Amide-modified carboxyl-containing polysaccharide Sodium aluminate and magnesium oxide Thermally stable hydroxyethylcellulose 30% ammonium or sodium thiosulfate and 20% hydroxyethylcellulose (HEC) Acrylic acid copolymer and oxyalkylene with hydrophobic group Copolymers acrylamide-acrylate and vinyl sulfonate-vinylamide Cationic polygalactomannans and anionic xanthan gum Copolymer from vinyl urethanes and acrylic acid or alkyl acrylates 2-Nitroalkyl ether-modified starch Polymer of glucuronic acid... [Pg.12]

Ti values may occur with such native biopolymers as ribonuclease A, deoxyribonucleic acid, and collagen, whose molecular motions are restricted, but, as yet, high values have not been observed for polysaccharides in solution, or for gels, in which these motional-restriction effects may be equivalent, or less marked. However, an extensive relaxation-study by Levy and coworkers68 on poly(n-alkyl methacrylates) may serve as a model for future experiments on polysaccharides, as this type of molecule has a main chain and side chains, albeit more mobile than those in polysaccharides. [Pg.29]

Our original approach to polysaccharide C-13 n.m.r. spectral analysis consisted of making a minimum number of hypotheses about expected structure-to-spectra relationships (8). By then comparing spectra to known structure for a series of D-glucans, we attempted to establish the validity of these hypotheses and to establish how diverse a structural difference could be accommodated The hypotheses were as follows. Firstly, that each polymer could be considered as an assembly of independent saccharide monomers. Secondly, that these hypothetical saccharide monomers would be 0 alkylated (0 -methylated) in the same positions as the actual saccharide linked residues (it had previously been established that 0-methylation of any a-D-glucopyranosyl carbon atom position resulted in a down-field displacement of vlO p.p.m. for the associated resonance). Thirdly, that each differently substituted residue would have a completely different set of chemical shift values for each carbon atom position (different from the unsubstituted saccharide) but that only the carbon atom positions involved in inter-saccharide linkages would have A6 greater that 1 p.p.m. And, fourthly, that the hypothetical 0-alkylated residues would contribute resonances to the total spectrum proportional to their mole ratio in the polymers. [Pg.29]

Several studies have been made of LB films of esters of naturally occurring polysaccharides. Kawaguchi et al. [242] formed long chain esters of cellulose which, however, could only be formed into multilayers by the horizontal lifting technique. Schoondorp et al. [243] studied LB multilayers of esters of amylose and showed that materials with short alkyl side chains have a helical conformation at the air/water interface and that this structure can be transferred into multilayers. As in the case of the isotactic polymethylmethacrylate, the helical structure appears to lead to an oriented structure in the LB film. These two families of materials are illustrated in Figure 5.9. [Pg.96]

Of the numerous alkyl protecting groups known [8, 9], only those widely used in synthetic chemistry of carbohydrates will be discussed. Methyl ethers — with hundreds of selective methylations far exceeding the scope of the review — were excluded for their unimportant role as synthetic intermediates (great majority of partial methylations are carried out to complete the list of reference compounds for the methylation analysis of polysaccharides, or simply to prepare ethers widely occurring in biologically important molecules). [Pg.211]

O-alkyl C C-OH Polysaccharides, alcohols, and other hydroxylated-and ether-linked C ls-n /ls3p/o 289.2-289.5eAjaq v... [Pg.744]

Methylation- or combined methylation-ethylation reactions were used for structure analysis of polysaccharides. The alkylation of dextran can be applied to the investigation of the branching pattern, i.e. the number and length of side chains (Sect. 2.2) [22,23]. The methylation is carried out in liquid ammonia with sodium iodide and methyl iodide, yielding products that are soluble in chloroform and tetrachloroethane [257]. [Pg.245]


See other pages where Polysaccharides alkylation is mentioned: [Pg.57]    [Pg.224]    [Pg.95]    [Pg.569]    [Pg.433]    [Pg.90]    [Pg.60]    [Pg.63]    [Pg.49]    [Pg.287]    [Pg.37]    [Pg.108]    [Pg.299]    [Pg.227]    [Pg.53]    [Pg.333]    [Pg.295]    [Pg.49]    [Pg.191]    [Pg.193]    [Pg.217]    [Pg.631]    [Pg.295]    [Pg.152]    [Pg.190]    [Pg.32]    [Pg.21]    [Pg.437]    [Pg.57]    [Pg.426]    [Pg.211]    [Pg.296]    [Pg.213]    [Pg.332]    [Pg.49]    [Pg.164]    [Pg.631]    [Pg.50]    [Pg.465]    [Pg.219]    [Pg.279]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



© 2024 chempedia.info