Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers Ziegler-Natta catalyst

Before the development of the Ziegler-Natta catalyst systems (Section 6 21) polymer ization of propene was not a reaction of much value The reason for this has a stereo chemical basis Consider a section of polypropylene... [Pg.312]

The stereoregulating capability of Ziegler-Natta catalysts is believed to depend on a coordination mechanism in which both the growing polymer chain and the monomer coordinate with the catalyst. The addition then occurs by insertion of the monomer between the growing chain and the catalyst by a concerted mechanism [XIX] ... [Pg.489]

The weight percent propylene in ethylene-propylene copolymers for different Ziegler-Natta catalysts was measuredt for the initial polymer produced from identical feedstocks. The following results were obtained ... [Pg.502]

Catalysts. Iodine and its compounds ate very active catalysts for many reactions (133). The principal use is in the production of synthetic mbber via Ziegler-Natta catalysts systems. Also, iodine and certain iodides, eg, titanium tetraiodide [7720-83-4], are employed for producing stereospecific polymers, such as polybutadiene mbber (134) about 75% of the iodine consumed in catalysts is assumed to be used for polybutadiene and polyisoprene polymeri2a tion (66) (see RUBBER CHEMICALS). Hydrogen iodide is used as a catalyst in the manufacture of acetic acid from methanol (66). A 99% yield as acetic acid has been reported. In the heat stabiH2ation of nylon suitable for tire cordage, iodine is used in a system involving copper acetate or borate, and potassium iodide (66) (see Tire cords). [Pg.366]

A weU-known feature of olefin polymerisation with Ziegler-Natta catalysts is the repHcation phenomenon ia which the growing polymer particle mimics the shape of the catalyst (101). This phenomenon allows morphological control of the polymer particle, particularly sise, shape, sise distribution, and compactness, which greatiy influences the polymerisation processes (102). In one example, the polymer particle has the same spherical shape as the catalyst particle, but with a diameter approximately 40 times larger (96). [Pg.413]

Olig omerization and Polymerization. Siace an aHyl radical is stable, linear a-olefins are not readily polymerized by free-radical processes such as those employed ia the polymerization of styrene. However, ia the presence of Ziegler-Natta catalysts, these a-olefins can be smoothly converted to copolymers of various descriptions. Addition of higher olefins during polymerization of ethylene is commonly practiced to yield finished polymers with improved physical characteristics. [Pg.436]

The primary use of TiCl is as a catalyst for the polymerisa tion of hydrocarbons (125—129). In particular, the Ziegler-Natta catalysts used to produce stereoregular polymers of several olefins and dienes, eg, polypropylene, are based on a-TiCl and A1(C2H3)3. The mechanism of this reaction has been described (130). SuppHers of titanium trichloride iaclude Akso America and Phillips Petroleum ia the United States, and Mitsubishi ia Japan. [Pg.130]

Complexation of the initiator and/or modification with cocatalysts or activators affords greater polymerization activity (11). Many of the patented processes for commercially available polymers such as poly(MVE) employ BE etherate (12), although vinyl ethers can be polymerized with a variety of acidic compounds, even those unable to initiate other cationic polymerizations of less reactive monomers such as isobutene. Examples are protonic acids (13), Ziegler-Natta catalysts (14), and actinic radiation (15,16). [Pg.514]

Erom 1955—1975, the Ziegler-Natta catalyst (91), which is titanium trichloride used in combination with diethylaluminum chloride, was the catalyst system for propylene polymerization. However, its low activity, which is less than 1000 g polymer/g catalyst in most cases, and low selectivity (ca 90% to isotactic polymer) required polypropylene manufacturers to purify the reactor product by washing out spent catalyst residues and removing unwanted atactic polymer by solvent extraction. These operations added significantly to the cost of pre-1980 polypropylene. [Pg.203]

Factors affecting laboratory polymerisation of the monomer have been discussed" and these indicate that a Ziegler-Natta catalyst system of violet TiCl3 and diethyl aluminium chloride should be used to react the monomer in a hydrocarbon diluent at atmospheric pressure and at 30-60°C. One of the aims is to get a relatively coarse slurry from which may be washed foreign material such as catalyst residues, using for example methyl alcohol. For commercial materials these washed polymers are then dried and compounded with an antioxidant and if required other additives such as pigments. [Pg.270]

Polybutadiene was first prepared in the early years of the 20th century by such methods as sodium-catalysed polymerisation of butadiene. However, the polymers produced by these methods and also by the later free-radical emulsion polymerisation techniques did not possess the properties which made them desirable rubbers. With the development of the Ziegler-Natta catalyst systems in the 1950s, it was possible to produce polymers with a controlled stereo regularity, some of which had useful properties as elastomers. [Pg.290]

Polymers containing 90-98% of a c 5-1,4-structure can be produced using Ziegler-Natta catalyst systems based on titanium, cobalt or nickel compounds in conjuction with reducing agents such as aluminium alkyls or alkyl halides. Useful rubbers may also be obtained by using lithium alkyl catalysts but in which the cis content is as low as 44%. [Pg.290]

Attempts to produce coplymers of ethylene and styrene by free radical and by conventional Ziegler-Natta catalysts systems have, over the years, not proved successful. However, in 1998 Dow announced novel polymers using a metallocene process with the intention of commercial polymerisation using a 23 000t.p.a. capacity plant starting in 1999. [Pg.308]

Using a low-pressure (pressure 5-50 atm) polymerization process in the presence of Ziegler-Natta catalyst, the PE produced is generally linear with or without the trace of SCBs and has a high density (upto about 0.965 g/cc) the polymer, therefore, is known as high-density PE (HOPE). [Pg.278]

Ziegler-Natta catalysts currently produce linear polyethylene (non-branched), stereoregular polypropylene, cis-polybutadiene, and other stereoregular polymers. [Pg.309]

Following their introduction in 1953, Ziegler-Natta catalysts revolutionized the field of polymer chemistry because of two advantages the resultant polymers are linear, with practically no chain branching, and they are stereochemical ly controllable. Isotactic, syndiotactic, and atactic forms can all be produced, depending on the catalyst system used. [Pg.1209]


See other pages where Polymers Ziegler-Natta catalyst is mentioned: [Pg.858]    [Pg.612]    [Pg.858]    [Pg.612]    [Pg.72]    [Pg.374]    [Pg.420]    [Pg.2515]    [Pg.424]    [Pg.488]    [Pg.242]    [Pg.467]    [Pg.345]    [Pg.407]    [Pg.407]    [Pg.411]    [Pg.411]    [Pg.425]    [Pg.430]    [Pg.430]    [Pg.430]    [Pg.524]    [Pg.72]    [Pg.503]    [Pg.8]    [Pg.38]    [Pg.289]    [Pg.359]    [Pg.320]    [Pg.13]    [Pg.163]    [Pg.164]    [Pg.277]    [Pg.287]    [Pg.311]    [Pg.1220]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Catalyst-polymer relationship, Ziegler-Natta

Chemical synthesis, polymers Ziegler-Natta catalyst

Natta

Polymer catalysts

Ziegler Natta catalyst

Ziegler Natta catalysts isotactic/atactic polymer

Ziegler catalyst

Ziegler-Natta

Ziegler-Natta Catalysts and Polymer Stereochemistry

© 2024 chempedia.info