Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer properties molecular weight

Polymer-Fluid Equilibria and the Glass Transition Most polymer systems fall in the Class HI or Class V phase diagrams, and the same system can often change from one class into the other as the polymer s molecular weight changes. Most polymers are insoluble in CO9 below 100°C, yet CO9 can be quite sohible in the polymer. For example, the sorption of CO9 into silicone rubber is highly dependent upon temperature and pressure, since these properties have a large influence on the density and activity of CO9. [Pg.2002]

The properties of three types of poly(methyl methacrylate) (sheet based on high molecular weight polymer, lower molecular weight injection moulding material and a one-time commercial copolymer) are given in Table 15.1. [Pg.406]

This polymer has a slightly stiffer chain and hence slightly higher melting point and heat distortion temperatures than poly(ethylene terephthalate). Films are available (Kodel-Kodak) which have been biaxially stretched about 200% from polymer with molecular weights of about 25 000. They are similar electrically to poly(ethylene terephthalate), are weaker mechanically but have superior resistance to water and in weathering stability. Some properties are given in Table 25.6. [Pg.719]

In this early work, both initiation and termination were seen to lead to formation of structural units different from those that make up the bulk of the chain. However, the quantity of these groups, when expressed as a weight fraction of the total material, appeared insignificant. In a polymer of molecular weight 100,000 they represent only ca 0.2% of units Thus, polymers formed by radical polymerization came to be represented by, and their physical properties and chemistry interpreted in terms of, the simple formula 1. [Pg.2]

Recently, interesting composite materials incorporating polymeric materials into the sol-gel glasses have been reported by Wilkes and his co-workers [9]. These materials are named ceramers . The properties of ceramers strongly depend on the reaction conditions, i.e., acidity, water content, reaction temperature, the amount of organic polymer, the molecular weight of polymer, solvent, and so on. [Pg.15]

Phthalazinone, 355 synthesis of, 356 Phthalic anhydride, 101 Phthalic anhydride-glycerol reaction, 19 Physical properties. See also Barrier properties Dielectric properties Mechanical properties Molecular weight Optical properties Structure-property relationships Thermal properties of aliphatic polyesters, 40-44 of aromatic-aliphatic polyesters, 44-47 of aromatic polyesters, 47-53 of aromatic polymers, 273-274 of epoxy-phenol networks, 413-416 molecular weight and, 3 of PBT, PEN, and PTT, 44-46 of polyester-ether thermoplastic elastomers, 54 of polyesters, 32-60 of polyimides, 273-287 of polymers, 3... [Pg.593]

The Suzuki coupling has been utilized to craft (Toctasubstituted tetramesitylporphyrins using various arylboronic acids [62], and Schluter has adopted this reaction to prepare phenyl-pyrrole mixed polymers 75 [63]. The BOC group is easily removed by heating [64] and polymers with molecular weights of up to 23,000 were synthesized. These polymers are potentiaEy interesting for their electrical and nonlinear optical properties [65]. [Pg.47]

The other possibility is to coat the silica with a polymer of defined properties (molecular weight and distribntion) and olefin groups, e.g., polybutadiene, and cross-linked either by radiation or with a radical starter dissolved in the polymer [32]. This method is preferentially used when other carriers like titania and zirconia have to be surface modified. Polyethylenimine has been cross-linked at the snrface with pentaerythrolglycidether [41] to yield phases for protein and peptide chromatography. Polysiloxanes can be thermally bonded to the silica surface. Other technologies developed in coating fnsed silica capillaries in GC (polysiloxanes with SiH bonds) can also be applied to prepare RP for HPLC. [Pg.57]

Numerous factors affect various mechanical properties of polymers, including molecular weight, processing, extent and distribution of crystallinity, composition of polymer, and use temperature. [Pg.57]

Two fundamental properties determine much of the behavior of polymers the molecular weight and the conformation (molecular shape). Because of the very high viscosities of even dilute solutions of galactomannans, determinations of the molecular weight are technically difficult. [Pg.277]

Sakai, M.,Fujimoto,T.,Nagasawa,M. Steady flow properties of monodisperse polymer solutions. Molecular weight and polymer concentration dependences of steady shear compliances at zero and finite shear rates. Macromolecules 5,786-792 (1972). [Pg.171]

Xanthan is the extracellular (exocellular) polysaccharide produced by Xanthomonas campestris. As with other microbial polysaccharides, the characteristics (polymer structure, molecular weight, solution properties) of xanthan preparations are constant and reproducible when a particular strain of the organism is grown under specified conditions, as is done commercially. The characteristics vary, however, with variations in the strain of the organism, the sources of nitrogen and carbon, degree of medium oxygenation, temperature, pH, and concentrations of various mineral elements. [Pg.488]

Specifications and Standards. Borax stability is an important property in adhesives, paper, and textile applications. Ollier emulsion properties tabulated by manufacturers include tolerance to specific solvents, surface tension, minimum film-forming temperature, dilution stability, freeze-thaw stability, percent soluble polymer, and molecular weight. [Pg.1678]

Many of the bulk properties of polymers are molecular weight dependent and can be expressed in the general form ... [Pg.2234]

SiLK resin is a solution of low molecular weight, aromatic, thermosetting polymer. The polymer s molecular weight and solution concentration were tuned to enable precise and convenient deposition by spin coating, a technique universally used by the industry for the deposition of photoresist materials. After deposition on a wafer, the polymer is thermally cured to an insoluble film that has a high glass transition temperature. The polymer has good mechanical properties at process temperatures, which is required for the application, and it is also resistant to process chemicals. [Pg.11]


See other pages where Polymer properties molecular weight is mentioned: [Pg.299]    [Pg.105]    [Pg.6795]    [Pg.299]    [Pg.105]    [Pg.6795]    [Pg.66]    [Pg.353]    [Pg.68]    [Pg.262]    [Pg.390]    [Pg.326]    [Pg.446]    [Pg.468]    [Pg.488]    [Pg.362]    [Pg.318]    [Pg.88]    [Pg.78]    [Pg.32]    [Pg.165]    [Pg.45]    [Pg.55]    [Pg.276]    [Pg.439]    [Pg.60]    [Pg.340]    [Pg.187]    [Pg.79]    [Pg.20]    [Pg.354]    [Pg.95]    [Pg.208]    [Pg.326]    [Pg.446]    [Pg.262]    [Pg.38]   
See also in sourсe #XX -- [ Pg.331 ]




SEARCH



Polymer molecular properties

Polymer weight

Polymers molecular weight

Properties molecular weight

Weight-property

Weighted Properties

© 2024 chempedia.info