Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer first method

LCB polymers can be formed by chemically linking preformed polymers (arm first or polymer first method) or by growing polymer chains from a multifunctional initiatior (core first method). In both cases living polymerization techniques are preferred because they provide better control over MW, MW distribution and the final branching architecture. However, highly selective coupling reactions e.g. with multifunctional isocyanates, or dicyclohexylcar-bodiimide (DCC) coupling, have also been successful. [Pg.75]

In the suspension process, which was the first method to be commercially developed, propylene is charged into the polymerisation vessel under pressure whilst the catalyst solution and the reaction diluent (usually naphtha) are metered in separately. In batch processes reaction is carried out at temperatures of about 60°C for approximately 1-4 hours. In a typical process an 80-85% conversion to polymer is obtained. Since the reaction is carried out well below the polymer melting point the process involves a form of suspension rather than solution polymerisation. The polymer molecular weight can be controlled in a variety of... [Pg.248]

For chromatographic sorbents it is necessary that the polymeric cover be uniformly distributed over the silica surface and chemically coupled to it. The appropriate introduction of the initiator is one of the decisive steps of this task. The first method (binding to the surface) increases the yield of grafted polymer. However in this case a large amount of homopolymer is formed. This disadvantage could be prevented by the application of hydroperoxide initiators in combination with the proper redox-agents [78-81],... [Pg.161]

In a more recent study, Westman and Lundin have described solid-phase syntheses of aminopropenones and aminopropenoates en route to heterocycles [32], Two different three-step methods for the preparation of these heterocycles were developed. The first method involved the formation of the respective ester from N-pro-tected glycine derivatives and Merrifield resin (Scheme 7.12 a), while the second method involved the use of aqueous methylamine solution for functionalization of the solid support (Scheme 7.12 b). The desired heterocycles were obtained by treatment of the generated polymer-bound benzylamine with the requisite acetophenones under similar conditions to those shown in Scheme 7.12 a, utilizing 5 equivalents of N,N-dimethylformamide diethyl acetal (DMFDEA) as reagent. The final... [Pg.303]

The colloidal stability of silica Suspensions in the present work was assessed by sediment volumes and from the optical coagulation rate constant. In the first method, 50 mg of silica was dispersed in 5 cm3 polymer solution (concentration 10-2 g cm 3) in a narrow tube and the sediment height found at equilibrium. Coagulation rates of the same systems were found by plotting reciprocal optical densities (500nm, 1cm cell) against time. When unstable dispersions were handled, the coagulation was followed in... [Pg.298]

For the first method exact equivalence of reactants are used to obtain high Molecular weight polymer. In the first step an aqueous solution of adipic acid is neutralised with hexamethylene diamine to form nylon salt. [Pg.215]

The reaction scheme is very general, but control over the extent of the intermolecular reactions and the distribution of the number of arms in the star is limited. The arm first method includes the polymerization (to form star polymers) or copolymerization (to form comb or graft copolymers) of macromonomers. The technique provides a handy simplification if the arm MW need not be very high and the MW control of the branched polymers is not very important. [Pg.75]

The core first method starts from multifunctional initiators and simultaneously grows all the polymer arms from the central core. The method is not useful in the preparation of model star polymers by anionic polymerization. This is due to the difficulties in preparing pure multifunctional organometallic compounds and because of their limited solubility. Nevertheless, considerable effort has been expended in the preparation of controlled divinyl- and diisopropenylbenzene living cores for anionic initiation. The core first method has recently been used successfully in both cationic and living radical polymerization reactions. Also, multiple initiation sites can be easily created along linear and branched polymers, where site isolation avoids many problems. [Pg.76]

There are two gereral routes to mikto-arm star polymers. The first method makes use of the stepwise addition of living polymers to multifunctional chloro-silane compounds [59-62], The Athens group uses the sequential addition of living polymers to multifunctional chlorosilane compounds under tight stoichiometric control [63, 64],... [Pg.78]

The core first method has been applied to prepare four-arm star PMMA. In this case selective degradation of the core allowed unambiguous proof of the star structure. However, the MWD is a little too large to claim that only four-arm star polymers are present [81], Comb PMMAs with randomly placed branches have been prepared by anionic copolymerization of MMA and monodisperse PMMA macromonomers [82], A thorough dilute solution characterization revealed monodisperse samples with 2 to 13 branches. A certain polydispersity of the number of branches has to be expected. This was not detected because the branch length was very short relative to the length of the backbone [83]. Recently, PMMA stars (with 6 and 12 arms) have been prepared from dendritic... [Pg.80]

One of the first methods for making capsules involved polymer coacervation. In this method, macromolecules are dissolved in either the dispersed or continuous phase of an emulsion and are induced to precipitate as a shell around the dispersed phase. Coacervation can be brought about in several ways, such as changes in temperature or pH, addition of salts or a second macromolecular substance, or solvent evaporation (Bungenberg de Jong 1949). [Pg.182]

Stars with high arm numbers are commonly prepared by the arm-first method. This procedure involves the synthesis of living precursor arms which are then used to initiate the polymerization of a small amount of a difunctional monomer, i.e., for linking. The difunctional monomer produces a crosslinked microgel (nodule), the core for the arms. The number of arms is a complex function of reaction variables. The arm-first method has been widely used in anionic [3-6,32-34], cationic [35-40], and group transfer polymerizations [41] to prepare star polymers having varying arm numbers and compositions. [Pg.3]


See other pages where Polymer first method is mentioned: [Pg.170]    [Pg.257]    [Pg.295]    [Pg.216]    [Pg.161]    [Pg.82]    [Pg.32]    [Pg.165]    [Pg.265]    [Pg.152]    [Pg.236]    [Pg.81]    [Pg.205]    [Pg.86]    [Pg.209]    [Pg.202]    [Pg.574]    [Pg.48]    [Pg.75]    [Pg.76]    [Pg.81]    [Pg.82]    [Pg.56]    [Pg.441]    [Pg.130]    [Pg.307]    [Pg.181]    [Pg.249]    [Pg.200]    [Pg.373]    [Pg.263]    [Pg.6]    [Pg.199]    [Pg.592]    [Pg.619]    [Pg.3]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



A first-principles method for polymers

Polymer method

© 2024 chempedia.info