Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer cross-linking thermal stability

Polyphosphazene-based PEMs are potentially attractive materials for both hydrogen/air and direct methanol fuel cells because of their reported chemical and thermal stability and due to the ease of chemically attaching various side chains for ion exchange sites and polymer cross-linking onto the — P=N— polymer backbone. Polyphosphazenes were explored originally for use as elastomers and later as solvent-free solid polymer electrolytes in lithium batteries, and subsequently for proton exchange membranes. [Pg.364]

Anthony, G. M. Kinetic and chemical studies of polymer cross-linking using thermal gravimetry and hyphenated methods. Degradation of polyvinylchloride. Polymer Degradation and Stability 1999 64 353. [Pg.507]

Figure 2 Properties in polyphosphazenes are determined hy (1) the backbone bonds that control the inherent flexibility of the polymer via their influence on bond torsional freedom, and also provide photo-and thermo-oxidative stahihty (2) the side groups control polymer solubility, reactivity, thermal stability, crystallinity, cross-linking, and (indirectly) polymer flexibility (3) free volume between the side groups affects polymer motion, solvent penetration, membrane behavior, and density (4) functional groups (usually introduced hy secondary reactions) affect soluhihty, biological behavior, proton conduction, cross-hnking, and many other properties... Figure 2 Properties in polyphosphazenes are determined hy (1) the backbone bonds that control the inherent flexibility of the polymer via their influence on bond torsional freedom, and also provide photo-and thermo-oxidative stahihty (2) the side groups control polymer solubility, reactivity, thermal stability, crystallinity, cross-linking, and (indirectly) polymer flexibility (3) free volume between the side groups affects polymer motion, solvent penetration, membrane behavior, and density (4) functional groups (usually introduced hy secondary reactions) affect soluhihty, biological behavior, proton conduction, cross-hnking, and many other properties...
Cross-linked macromolecular gels have been prepared by Eriedel-Crafts cross-linking of polystyrene with a dihaloaromatic compound, or Eriedel-Crafts cross-linking of styrene—chloroalkyl styrene copolymers. These polymers in their sulfonated form have found use as thermal stabilizers, especially for use in drilling fluids (193). Cross-linking polymers with good heat resistance were also prepared by Eriedel-Crafts reaction of diacid haUdes with haloaryl ethers (194). [Pg.563]

The thermal stability of polymers of types (1) and (2) is also dependent on the nature of the substituents on phosphoms. Polymers with methoxy and ethoxy substituents undergo skeletal changes and degradation above about 100°C, but aryloxy and fluoroalkoxy substituents provide higher thermal stability (4). Most of the P—N- and P—O-substituted polymers either depolymerize via ring-chain equilibration or undergo cross-linking reactions at temperatures much above 150—175°C. [Pg.257]

In analogy with thermal and light radiations, high-energy radiation may also lead to scission and cross-linking. The relative stabilities of various polymer stmctures are shown in Figure Whilst some materials cross-link others... [Pg.98]

The commercial polymers are of comparatively low molecular weight (M = 25 000-60 000) and whilst being essentially linear may contain a few branches or cross-links arising out of thermal oxidation. Exposure to ultraviolet light causes a rapid increase in gel content, whilst heating in an oven at 125°C causes gelation only after an induction period of about 1000 hours. Eor outdoor applications it is necessary to incorporate carbon black. The polymers, however, exhibit very good hydrolytic stability. [Pg.587]

As far as polymer supports for microwave-assisted SPOS are concerned, the use of cross-linked macroporous or microporous polystyrene (PS) resins has been most prevalent. In contrast to common belief, which states that the use of polystyrene resins limits reaction conditions to temperatures below 130 °C [14], it has been shown that these resins can withstand microwave irradiation for short periods of time, such as 20-30 min, even at 200 °C in solvents such as l-methyl-2-pyrrolidone or 1,2-dichlorobenzene [15]. Standard polystyrene Merrifield resin shows thermal stability up to 220 °C without any degradation of the macromolecular structure of the polymer backbone, which allows reactions to be performed even at significantly elevated temperatures. [Pg.294]

A detailed understanding of the course of a reaction between a polymer and an additive will permit one to use that information to design new flame retardants. The reaction between poly(methyl methacrylate), PMMA, and red phosphorus is described and that information used to determine that CIRh(PPh3)3 should be used as a flame retardant. The results of this investigation are then used to choose the next additive. A recurring theme is the efficacy of cross-linking as a means to impart an increased thermal stability. [Pg.178]


See other pages where Polymer cross-linking thermal stability is mentioned: [Pg.14]    [Pg.90]    [Pg.119]    [Pg.318]    [Pg.344]    [Pg.261]    [Pg.22]    [Pg.255]    [Pg.90]    [Pg.379]    [Pg.285]    [Pg.372]    [Pg.144]    [Pg.60]    [Pg.8339]    [Pg.8844]    [Pg.172]    [Pg.119]    [Pg.23]    [Pg.313]    [Pg.300]    [Pg.89]    [Pg.315]    [Pg.144]    [Pg.490]    [Pg.164]    [Pg.266]    [Pg.3]    [Pg.410]    [Pg.361]    [Pg.44]    [Pg.62]    [Pg.56]    [Pg.97]    [Pg.100]    [Pg.876]    [Pg.894]    [Pg.777]    [Pg.62]    [Pg.449]    [Pg.41]   
See also in sourсe #XX -- [ Pg.903 ]




SEARCH



Cross polymer

Linked polymer

Polymer cross-link

Polymer stabilization

Polymer stabilization stabilizers

Polymer stabilization thermal stabilizers

Stabilizer polymer

Stabilizing polymers

Thermal cross-linking

Thermal link

© 2024 chempedia.info