Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly synthesized, molecular

Miller et al. used various ohgoimides in conjunction with several generations of poly(benzylether) dendrons to synthesize molecular dumbells", the largest of which extended 9.6 nm in length. The electrochemistry of the imide reduction was studied using cyclic voltammetry at scan rates up to 100 Vs , and it was found that the dendrimer did not... [Pg.5947]

Polymerization ofiVIasked Disilenes. A novel approach, namely, the anionic polymerization of masked disilenes, has been used to synthesize a number of poly(dialkylsilanes) as well as the first dialkylamino substituted polysilanes (eq. 13) (111,112). The route is capable of providing monodisperse polymers with relatively high molecular weight M = lO" — 10 ), and holds promise of being a good method for the synthesis of alternating and block copolymers. [Pg.262]

In addition, polyester polyols are made by the reaction of caprolactone with diols. Poly(caprolactone diols) are used in the manufacture of thermoplastic polyurethane elastomers with improved hydrolytic stabiHty (22). The hydrolytic stabiHty of the poly(caprolactone diol)-derived TPUs is comparable to TPUs based on the more expensive long-chain diol adipates (23). Polyether/polyester polyol hybrids are synthesized from low molecular weight polyester diols, which are extended with propylene oxide. [Pg.347]

Bismaleimides are best defined as low molecular weight, at least diftinctional monomers or prepolymers, or mixtures thereof, that carry maleimide terminations (Eig. 3). Such maleimide end groups can undergo homopolymerization and a wide range of copolymerizations to form a highly cross-linked network. These cure reactions can be effected by the appHcation of heat and, if required, ia the presence of a suitable catalyst. The first patent for cross-linked resias obtained through the homopolymerization or copolymerization of BMI was granted to Rhc ne Poulenc, Erance, ia 1968 (13). Shordy after, a series of patents was issued on poly(amino bismaleimides) (14), which are synthesized from bismaleimide and aromatic diamines. [Pg.23]

Polyarylether Ketones. The aromatic polyether ketones are tme thermoplastics. Although several are commercially available, two resins in particular, poly ether ether ketone [31694-16-3] (PEEK) from ICI and poly ether ketone ketone (PEKK) from Du Pont, have received most of the attention. PEEK was first synthesized in 1981 (20) and has been well studied it is the subject of numerous papers because of its potential use in high performance aircraft. Tough, semicrystalline PEEK is prepared by the condensation of bis(4-fiuorophenyl) ketone with the potassium salt of bis(4-hydroxyphenyl) ketone in a diaryl sulfone solvent, such as diphenyl sulfone. The choice of solvent is critical other solvents, such as Hquid HE, promote the reaction but lead to premature low molecular-weight crystals, which do not exhibit sufficient toughness (21). [Pg.38]

Isobutjiene was first polymerized ia 1873. High molecular weight polymer was later synthesized at I. G. Farben by decreasiag the polymerization temperature to —75°, but the saturated, unreactive polymer could not be cross-linked iato a useful synthetic elastomer. It was not until 1937 that poly(isobutylene- (9-isoprene) [9010-85-9] or butyl mbber was iavented at the Standard Oil Development Co. (now Exxon Chemical Co.) laboratories (1). [Pg.480]

Poly(MA-CDA) was synthesized as described previously by a free radical copolymerization followed by hydrolysis in aqueous solution. By the fractional precipita- n of the copolymerization product (MW = 14,200, MW/Mn = 3.1) different average-molecular weight po-ly(M A-CDA)s with narrow polydispersity were obtained as shown in Table 2. [Pg.185]

As these block copolymers were synthesized using the anionic polymerization technique, their molecular weight distributions were narrow. The microspheres with narrower size distribution are better for well-ordered self-organization. Actually, all block copolymers synthesized for these works formed poly(4-vinyl pyridine) (P4VP) spheres in the PS matrices with narrow size distributions. [Pg.602]

The poly(styrene-b-isoprene) (P(S-b-IP)) and poly(-styrene-b-2-vinyl pyridine) (P(S-b-2VP)) block copolymers with narrow molecular weight distributions for blending with the microspheres were also synthesized using the additional anionic polymerization technique. The number-average molecular weights (Mns) and PS contents are also shown in Table 1. [Pg.602]

Robeson and Matzner were the first to report the synthesis of the sulfonation of DCDPS.205 This work makes it possible to synthesize sulfonated poly(arylene ether sulfone) with well-controlled structures. Ueda et al. used this monomer (Scheme 6.27) as a comonomer of DCDPS to react with bisphenol A and high-molecular-weight bisphenol-A-based copolymers with up to 30 mol % sulfonation achieved.206 Biphenol-based copolymers with up to 100 mol % sulfonation were recently reported by Wang et al.207... [Pg.356]

In the field of soluble conducting polymers new data have been published on poly(3-alkylthiophenes " l They show that the solubility of undoped polymers increases with increasing chain length of the substituent in the order n-butyl > ethyl methyl. But, on the other hand, it has turned out that in the doped state the electro-chemically synthesized polymers cannot be dissolved in reasonable concentrations In a very recent paper Feldhues et al. have reported that some poly(3-alkoxythio-phenes) electropolymerized under special experimental conditions are completely soluble in dipolar aprotic solvents in both the undoped and doped states. The molecular weights were determined in the undoped state by a combination of gel-permeation chromatography (GPC), mass spectroscopy and UV/VIS spectroscopy. It was established that the usual chain length of soluble poly(3-methoxthythiophene) consists of six monomer units. [Pg.36]

Poly(para-phenylenevinylene)s (PPVs) represent one of the most intensively investigated classes of rr-conjugated materials. Many synthetic procedures to generate unsubstituted and substituted PPVs have been developed. They include 1,6-polymerizations of 1,4-xylylene intermediates as well as several polycondensation methods. Parallel to the polymer syntheses, several series of PPV oligomers (OPVs) have been synthesized and characterized. Such model oligomers of different molecular size allow for a study of the dependence of electronic and optical properties on the length of the conjugated Ti-system. [Pg.163]

Ester-thioester copolymers were enzymatically synthesized (Scheme 7). ° The lipase CA-catalyzed copolymerization of e-caprolactone with 11-mercaptoundecanoic acid or 3-mercaptopropionic acid under reduced pressure produced the polymer with molecular weight higher than 2 x 10". The thioester unit of the resulting polymer was lower than the feed ratio. The transesterification between poly(8-caprolactone) and 11-mercaptoundecanoic acid or 3-mercaptopropionic acid also took place by lipase CA catalyst. Recently, aliphatic polythioesters were synthesized by lipase CA-catalyzed polycondensation of diesters with 1,6-hexanedithiol. ... [Pg.218]

Various substituted styrene-alkyl methacrylate block copolymers and all-acrylic block copolymers have been synthesized in a controlled fashion demonstrating predictable molecular weight and narrow molecular weight distributions. Table I depicts various poly (t-butylstyrene)-b-poly(t-butyl methacrylate) (PTBS-PTBMA) and poly(methyl methacrylate)-b-poly(t-butyl methacrylate) (PMMA-PTBMA) samples. In addition, all-acrylic block copolymers based on poly(2-ethylhexyl methacrylate)-b-poly(t-butyl methacrylate) have been recently synthesized and offer many unique possibilities due to the low glass transition temperature of PEHMA. In most cases, a range of 5-25 wt.% of alkyl methacrylate was incorporated into the block copolymer. This composition not only facilitated solubility during subsequent hydrolysis but also limited the maximum level of derived ionic functionality. [Pg.264]


See other pages where Poly synthesized, molecular is mentioned: [Pg.158]    [Pg.316]    [Pg.316]    [Pg.264]    [Pg.298]    [Pg.227]    [Pg.36]    [Pg.1029]    [Pg.738]    [Pg.533]    [Pg.109]    [Pg.334]    [Pg.345]    [Pg.349]    [Pg.472]    [Pg.57]    [Pg.41]    [Pg.42]    [Pg.43]    [Pg.51]    [Pg.163]    [Pg.893]    [Pg.202]    [Pg.43]    [Pg.193]    [Pg.18]    [Pg.215]    [Pg.241]    [Pg.244]    [Pg.53]    [Pg.154]    [Pg.154]    [Pg.154]    [Pg.146]    [Pg.149]    [Pg.194]   


SEARCH



Poly , molecular

© 2024 chempedia.info