Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Poly association

In the same way, addition of water to the complex always increases the amount of PT by formation of cooperative poly associations on the polar structure ... [Pg.596]

Figure 6. Formation of supramolecular main-chain polymers by poly association of complementary components. Figure 6. Formation of supramolecular main-chain polymers by poly association of complementary components.
Several questions arise on the internal dynamics associated with the breakdown of the poly ad number. We can only specnlate in what follows, awaiting the illnmination of fiiture research. [Pg.75]

If tlie level(s) associated witli tlie defect are deep, tliey become electron-hole recombination centres. The result is a (sometimes dramatic) reduction in carrier lifetimes. Such an effect is often associated witli tlie presence of transition metal impurities or certain extended defects in tlie material. For example, substitutional Au is used to make fast switches in Si. Many point defects have deep levels in tlie gap, such as vacancies or transition metals. In addition, complexes, precipitates and extended defects are often associated witli recombination centres. The presence of grain boundaries, dislocation tangles and metallic precipitates in poly-Si photovoltaic devices are major factors which reduce tlieir efficiency. [Pg.2887]

HydrophobicaHy Modified, Ethoxylated Urethane. HEUR associative thickeners are in effect poly(oxyethylene) polymers that contain terminal hydrophobe units (66). They can be synthesized via esterification with monoacids, tosylation reactions, or direct reaction with monoisocyanates. There are problems associated with aH of the methods of synthesis. The general commercial procedure for their synthesis is by a step-growth addition of... [Pg.321]

Association Complexes. The unshared electron pairs of the ether oxygens, which give the polymer strong hydrogen bonding affinity, can also take part in association reactions with a variety of monomeric and polymeric electron acceptors (40,41). These include poly(acryhc acid), poly(methacryhc acid), copolymers of maleic and acryflc acids, tannic acid, naphthoHc and phenoHc compounds, as well as urea and thiourea (42—47). [Pg.342]

When equal amounts of solutions of poly(ethylene oxide) and poly(acryhc acid) ate mixed, a precipitate, which appears to be an association product of the two polymers, forms immediately. This association reaction is influenced by hydrogen-ion concentration. Below ca pH 4, the complex precipitates from solution. Above ca pH 12, precipitation also occurs, but probably only poly(ethylene oxide) precipitates. If solution viscosity is used as an indication of the degree of association, it appears that association becomes mote pronounced as the pH is reduced toward a lower limit of about four. The highest yield of insoluble complex usually occurs at an equimolar ratio of ether and carboxyl groups. Studies of the poly(ethylene oxide)—poly(methacryhc acid) complexes indicate a stoichiometric ratio of three monomeric units of ethylene oxide for each methacrylic acid unit. [Pg.342]

These association reactions can be controlled. Acetone or acetonylacetone added to the solution of the polymeric electron acceptor prevents insolubilization, which takes place immediately upon the removal of the ketone. A second method of insolubiUzation control consists of blocking the carboxyl groups with inorganic cations, ie, the formation of the sodium or ammonium salt of poly(acryhc acid). Mixtures of poly(ethylene oxide) solutions with solutions of such salts can be precipitated by acidification. [Pg.342]

Poly(ethylene oxide) associates in solution with certain electrolytes (48—52). For example, high molecular weight species of poly(ethylene oxide) readily dissolve in methanol that contains 0.5 wt % KI, although the resin does not remain in methanol solution at room temperature. This salting-in effect has been attributed to ion binding, which prevents coagulation in the nonsolvent. Complexes with electrolytes, in particular lithium salts, have received widespread attention on account of the potential for using these materials in a polymeric battery. The performance of soHd electrolytes based on poly(ethylene oxide) in terms of ion transport and conductivity has been discussed (53—58). The use of complexes of poly(ethylene oxide) in analytical chemistry has also been reviewed (59). [Pg.342]

Molecular Weight. Measurement of intrinsic viscosity in water is the most commonly used method to determine the molecular weight of poly(ethylene oxide) resins. However, there are several problems associated with these measurements (86,87). The dissolved polymer is susceptible to oxidative and shear degradation, which is accelerated by filtration or dialysis. If the solution is purified by centrifiigation, precipitation of the highest molecular weight polymers can occur and the presence of residual catalyst by-products, which remain as dispersed, insoluble soHds, further compHcates purification. [Pg.343]

Analysis for Poly(Ethylene Oxide). Another special analytical method takes advantage of the fact that poly(ethylene oxide) forms a water-insoluble association compound with poly(acryhc acid). This reaction can be used in the analysis of the concentration of poly(ethylene oxide) in a dilute aqueous solution. Ereshly prepared poly(acryhc acid) is added to a solution of unknown poly(ethylene oxide) concentration. A precipitate forms, and its concentration can be measured turbidimetricaHy. Using appropriate caUbration standards, the precipitate concentration can then be converted to concentration of poly(ethylene oxide). The optimum resin concentration in the unknown sample is 0.2—0.4 ppm. Therefore, it is necessary to dilute more concentrated solutions to this range before analysis (97). Low concentrations of poly(ethylene oxide) in water may also be determined by viscometry (98) or by complexation with KI and then titration with Na2S202 (99). [Pg.343]

The PVA process is highly capital-iatensive, as separate faciUties are required for the production of poly(viayl acetate), its saponification to PVA, the recovery of unreacted monomer, and the production of acetic acid from the ester formed during alcoholysis. Capital costs are far in excess of those associated with the traditional production of other vinyl resins. [Pg.486]

Eig. 2. Lattice distortions associated with the neutral, polaron, and bipolaron states in poly(p-phenylene). [Pg.40]

Liquid Third Phase. A third Hquid with coUoidal stmcture has been a known component in emulsions since the 1970s (22) for nonionic surfactants of the poly(ethylene glycol) alkylaryl ether type. It allows low energy emulsification (23) using the strong temperature dependence of the coUoidal association stmctures in the water—surfactant—hydrocarbon systems. [Pg.201]

Most toxicity problems associated with the finished product arise from the nature of the additives and seldom from the polymer. Mention should, however, be made of poly(vinyl carbazole) and the polychloroacrylates which, when monomer is present, can cause unpleasant effects, whilst in the 1970s there arose considerable discussion on possible links between vinyl chloride and a rare form of cancer known as angiosarcoma of the liver. [Pg.104]

In the case of polymer molecules where the dipoles are not directly attached to the main chain, segmental movement of the chain is not essential for dipole polarisation and dipole movement is possible at temperatures below the glass transition temperature. Such materials are less effective as electrical insulators at temperatures in the glassy range. With many of these polymers, e.g., poly(methyl methacrylate), there are two or more maxima in the power factor-temperature curve for a given frequency. The presence of two such maxima is due to the different orientation times of the dipoles with and without associated segmental motion of the main chain. [Pg.116]

Poly(vinyl acetate) is too soft and shows excessive cold flow for use in moulded plastics. This is no doubt associated with the fact that the glass transition temperature of 28°C is little above the usual ambient temperatures and in fact in many places at various times the glass temperature may be the lower. It has a density of 1.19 g/cm and a refractive index of 1.47. Commercial polymers are atactic and, since they do not crystallise, transparent (if free from emulsifier). They are successfully used in emulsion paints, as adhesives for textiles, paper and wood, as a sizing material and as a permanent starch . A number of grades are supplied by manufacturers which differ in molecular weight and in the nature of comonomers (e.g. vinyl maleate) which are commonly used (see Section 14.4.4)... [Pg.389]

Carothers also produced a number of aliphatic linear polyesters but these did not fulfil his requirements for a fibre-forming polymer which were eventually met by the polyamide, nylon 66. As a consequence the polyesters were discarded by Carothers. However, in 1941 Whinfield and Dickson working at the Calico Printers Association in England announced the discovery of a fibre from poly(ethylene terephthalate). Prompted by the success of such a polymer, Farbenfabriken Bayer initiated a programme in search of other useful polymers containing aromatic rings in the main chain. Carbonic acid derivatives were reacted with many dihydroxy compounds and one of these, bis-phenol A, produced a polymer of immediate promise. [Pg.557]


See other pages where Poly association is mentioned: [Pg.71]    [Pg.72]    [Pg.76]    [Pg.191]    [Pg.14]    [Pg.76]    [Pg.317]    [Pg.431]    [Pg.134]    [Pg.192]    [Pg.221]    [Pg.292]    [Pg.469]    [Pg.163]    [Pg.463]    [Pg.483]    [Pg.487]    [Pg.525]    [Pg.233]    [Pg.171]    [Pg.171]    [Pg.105]    [Pg.40]    [Pg.206]    [Pg.153]    [Pg.421]    [Pg.440]    [Pg.722]    [Pg.380]    [Pg.113]    [Pg.977]    [Pg.285]    [Pg.41]   
See also in sourсe #XX -- [ Pg.227 , Pg.229 ]

See also in sourсe #XX -- [ Pg.227 , Pg.229 ]




SEARCH



© 2024 chempedia.info