Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polar reaction nucleophiles

In polar reactions, nucleophiles react with electrophiles. Furthermore, most polar reactions are carried out under either acidic or basic conditions. [Pg.27]

In polar reactions, nucleophiles react with electrophiles. [Pg.26]

In the synthesis of molecules without functional groups the application of the usual polar synthetic reactions may be cumbersome, since the final elimination of hetero atoms can be difficult. Two solutions for this problem have been given in the previous sections, namely alkylation with nucleophilic carbanions and alkenylation with ylides. Another direct approach is to combine radical synthons in a non-polar reaction. Carbon radicals are. however, inherently short-lived and tend to undergo complex secondary reactions. Escheirmoser s principle (p. 34f) again provides a way out. If one connects both carbon atoms via a metal atom which (i) forms and stabilizes the carbon radicals and (ii) can be easily eliminated, the intermolecular reaction is made intramolecular, and good yields may be obtained. [Pg.36]

The most general methods for the syntheses of 1,2-difunctional molecules are based on the oxidation of carbon-carbon multiple bonds (p. 117) and the opening of oxiranes by hetero atoms (p. 123fl.). There exist, however, also a few useful reactions in which an a - and a d -synthon or two r -synthons are combined. The classical polar reaction is the addition of cyanide anion to carbonyl groups, which leads to a-hydroxynitriles (cyanohydrins). It is used, for example, in Strecker s synthesis of amino acids and in the homologization of monosaccharides. The ff-hydroxy group of a nitrile can be easily substituted by various nucleophiles, the nitrile can be solvolyzed or reduced. Therefore a large variety of terminal difunctional molecules with one additional carbon atom can be made. Equally versatile are a-methylsulfinyl ketones (H.G. Hauthal, 1971 T. Durst, 1979 O. DeLucchi, 1991), which are available from acid chlorides or esters and the dimsyl anion. Carbanions of these compounds can also be used for the synthesis of 1,4-dicarbonyl compounds (p. 65f.). [Pg.50]

What about the second reactant, HBr As a strong acid, HBr is a powerful proton (H+) donor and electrophile. Thus, the reaction between HBr and ethylene is a typical electrophile-nucleophile combination, characteristic of all polar reactions. [Pg.147]

The electrophilic addition of HBr to ethylene is only one example of a polar process there are many others that vve ll study in detail in later chapters. But regardless of the details of individual reactions, all polar reactions take place between an electron-poor site and an electron-rich site and involve the donation of an electron pair from a nucleophile to an electrophile. [Pg.148]

A full description of how a reaction occurs is called its mechanism. There are two general kinds of mechanisms by which reactions take place radical mechanisms and polar mechanisms. Polar reactions, the more common type, occur because of an attractive interaction between a nucleophilic (electron-rich) site in one molecule and an electrophilic (electron-poor) site in another molecule. A bond is formed in a polar reaction when the nucleophile donates an electron pair to the electrophile. This movement of electrons is indicated by a curved arrow showing the direction of electron travel from the nucleophile to... [Pg.165]

Before beginning a detailed discussion of alkene reactions, let s review briefly some conclusions from the previous chapter. We said in Section 5.5 that alkenes behave as nucleophiles (Lewis bases) in polar reactions. The carbon-carbon double bond is electron-rich and can donate a pair of electrons to an electrophile (Lewis acid), for example, reaction of 2-methylpropene with HBr yields 2-bromo-2-methylpropane. A careful study of this and similar reactions by Christopher Ingold and others in the 1930s led to the generally accepted mechanism shown in Figure 6.7 for electrophilic addition reactions. [Pg.188]

We saw in the preceding chapter that the carbon-ha]ogen bond in an alkyl halide is polar and that the carbon atom is electron-poor. Thus, alkyl halides are electrophiles, and much of their chemistry involves polar reactions with nucleophiles and bases. Alkyl halides do one of two things when they react with a nucleophile/base, such as hydroxide ion either they undergo substitution of the X group by the nucleophile, or they undergo elimination of HX to yield an alkene. [Pg.359]

The chemistry of amines ts dominated by the lone pair of electrons on nitrogen, which makes amines both basic and nucleophilic. They react with acids to form acid-base salts, and they react with electrophiles in many of the polar reactions seen in past chapters. Note in the following electrostatic potential map of trimethylamine how the negative (red) region corresponds to the lone-pair of electrons on nitrogen. [Pg.921]

Nucleophile (Section 5.4) A "nucleus-lover," or species that donates an electron pair to an electrophile in a polar bond-forming reaction. Nucleophiles are also Lewis bases. [Pg.1246]

Polar reaction (Section 5.2) A reaction in which bonds are made when a nucleophile donates two electrons to an electrophile and in which bonds are broken when one fragment leaves with both electrons from the bond. [Pg.1248]

The exact behavior and mechanism of electrophilic additions to alkynes is clearly strongly dependent upon the reaction conditions. In a highly polar and strongly acidic but weakly nucleophilic solvent such as trifluoroacetic acid, addition via a vinyl cation intermediate is favored whereas in less polar, more nucleophilic solvents such as acetic acid, a different mechanism prevails. [Pg.217]

Bowman has surveyed the reactions of cx-substituted aliphatic nitro compounds with nucleophiles, which undergo either S l substitution or polar reaction (Scheme 5.16).118 The reactions between a wide variety of nucleophiles and BrCH2N02 are shown in Scheme 5.17.119a b All the thiolates, PhS02 and I attack Br to liberate the anion of nitromethane. The hard nucleophiles, MeO , OH, and BH4 attack the hard H+ electrophilic center. Phosphorous nucleophiles attackthe oxygen electrophilic center, and only Me2S attacks the carbon electrophilic center. [Pg.150]

Molecules in heterolytic (polar) reactions form and break bonds by "coordination" and molecules in homolytic (nonpolar or free radical) reactions form and break bonds by "colligation."75 (Two more new terms ) Heterolytic reactions occur mostly in solutions, usually involving ion formation and electrophilic or nucleophilic reactions homolytic reactions occur mostly in gases and do not involve ions because less energy is required to distance the atoms into neutral radicals.76... [Pg.234]

A solvent-dependent chemoselectivity, pointing to a dependence of the relative reactivities of the 1,2- and 1,1-disubstituted double bonds on solvent polarity and nucleophilicity, has been observed in the reaction of benzeneselenenyl chloride with 2-methylenebicyclo[2.2.1]hept-5-ene (159) which gives products 160-163140. In methylene chloride the reaction occurs with a moderate chemoselectivity, attack on the endocyclic bond being preferred over that on the exocyclic one in a 60 40 ratio. In methanol, the addition is completely chemoselective and the attack occurs exclusively on the endocyclic double bond (equation 132). It may be further noted that 162 and 163 isomerize and solvolyze at high temperatures, leading to the homoallylic products 160 and 161. [Pg.620]

Solvent effects Different solvents have different effects on the nucleophilicity of a species. Solvents with acidic protons are called protic solvents, usually O—H or N—H groups. Polar protic solvents, e.g. dimethyl sulph-oxide (DMSO), dimethyl formamide (DMF), acetonitrile (CH3CN) and acetone (CH3COCH3) are often used in 8 2 reactions, since the polar reactants (nucleophile and alkyl halide) generally dissolve well in them. [Pg.237]

We now wish to discuss displacements by nucleophilic reagents (Y ) on alkyl derivatives (RX). These are ionic or polar reactions involving attack by a nucleophile at carbon. A typical example is the reaction of hydroxide ion with bromomethane to displace bromide ion ... [Pg.213]

The use of solvents more polar and nucleophilic than benzene, e.g. ethanol, increases the electrophilicity of the sterically more-accessible position 3 because of the interaction of the cation with the solvent, and the addition of primary amines occurs in position 1. Thus, one may conclude that decarboxylation of salts 62 in the reaction with primary amines occurs by a preliminary addition of nucleophile, whereas the decarboxylation of isoquinolinium salts 161 to 162 proceeds by a ylide mechanism as is shown here. As known, the latter pathway requires the use of stronger bases and more elevated temperatures (79MI3). [Pg.199]

The khietics of die reactions of 1 -halo-2.4-dinitrobcnzcncs with aliphatic amines have been used to probe solvent effects in mixtures of chloroform or dichloromethane with polar hydrogen-bond acceptors, such as DMSO. In these reactions, nucleophilic attack is rate limiting. Attempts to correlate reactivity with the empirical solvent... [Pg.243]

With 50% aqueous acetone, there is a weak nucleophile (H20) and a highly polar reaction medium favoring ionization, or the SN1 mechanism. In this mechanism, the reactivity order of alkyl halides is tertiary > secondary > primary. Therefore,... [Pg.119]

Esters, tertiary amides, and nitriles are frequently used as solvents for organic reactions because they provide a polar reaction medium without O—H or N—H groups that can donate protons or act as nucleophiles. Ethyl acetate is a moderately polar solvent with a boiling point of 77 °C, convenient for easy evaporation from a reaction mixture. Acetonitrile, dimethylformamide (DMF), and dimethylacetamide (DMA) are highly polar solvents that solvate ions almost as well as water, but without the reactivity of O—H or N—H groups. These three solvents are miscible with water and are often used in solvent mixtures with water. [Pg.990]

These simple charge or orbital interactions may be enough to explain simple inorganic reactions but we shall also be concerned with nucleophiles that supply electrons out of bonds and electrophiles that accept electrons into antibonding orbitals. For the moment accept that polar reactions usually involve electrons flowing from a nucleophile and towards an electrophile. [Pg.116]

In Chapter 30, you came across the idea of umpolung, the inversion of the usual reactivity pattern of a molecule. You may have already noticed that radicals often have an umpolung reactivity pattern. Alkyl halides are electrophiles in polar reactions yet they generate nucleophilic radicals that react with electrophilic alkenes. [Pg.1048]

Here are a few reminders for drawing the mechanisms of nucleophilic addition and substitution reactions. (1) When a reaction is acid-catalyzed, none of the intermediates are negatively charged, although, occasionally, a few may be neutral. Check your mechanisms for charge balance. (2) Make sure you have drawn arrows correctly. The point of the arrow shows the new location of the electron pair at the base of the arrow. (3) In a polar reaction, two arrows never point at each other. If you find two arrows pointing at each other, redraw the mechanism. [Pg.575]

We sow irt the preceding chapter that the carbon-halogen bond in alkyl holtdes its polar and that the carbon atom electron-poor. Thus, alkyl halides are electrophileii, and much of their chemistry involves polar reactions with nucleophiles and bases. [Pg.405]


See other pages where Polar reaction nucleophiles is mentioned: [Pg.199]    [Pg.145]    [Pg.166]    [Pg.381]    [Pg.99]    [Pg.251]    [Pg.252]    [Pg.443]    [Pg.189]    [Pg.343]    [Pg.537]    [Pg.208]    [Pg.142]    [Pg.227]    [Pg.7]    [Pg.102]    [Pg.37]    [Pg.430]    [Pg.654]    [Pg.199]    [Pg.179]    [Pg.201]   
See also in sourсe #XX -- [ Pg.145 ]

See also in sourсe #XX -- [ Pg.145 ]

See also in sourсe #XX -- [ Pg.184 ]

See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Reaction polarity

© 2024 chempedia.info