Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Plutonium halide complexes

Thermodynamics of Plutonium Halides and Halogeno Complexes in the Solid State and in Aqueous Media... [Pg.79]

Actinide halides and oxyhalides are known to form numerous complexes with oxygen and nitrogen donor ligands and the preparation and properties of such compounds have recently been reviewed (12, 13). Relatively few protactinium halide complexes are known, but this situation reflects the lack of research rather than a tendency not to form complexes. However, there is sufficient information available for certain ligands to permit a comparison with the behavior of other actinide halides, and to illustrate the similarities and differences observed with the tetrahalides of thorium to plutonium inclusive and, to a lesser extent, with the protactinium and uranium pentahalides. [Pg.31]

A wide variety of anionic actinide halide complexes are well known and typically are isolated with alkali or alkahne-earth metal ions. The tendency and stability of the anionic complexes follow the trend F Cl > Br I. The trivalent fluorides and chlorides typically form complexes of the form AnX4 and AnXe ". Plutonium has also been shown to give the following complexes PuCb ", Pu2Cl7, and PuClg . The anionic tetravalent actinide fluorides represent a broad class of complexes, for example, M AnFj, (x = 1, y = 5 x = 2, y = 6 V = 3, y = 7 x = 4, y = 8). Tetravalent actinide chloro, bromo and iodo complexes can be isolated from aqueous solutions in the form of octahedral AnCle " ions. [Pg.28]

The many possible oxidation states of the actinides up to americium make the chemistry of their compounds rather extensive and complicated. Taking plutonium as an example, it exhibits oxidation states of -E 3, -E 4, +5 and -E 6, four being the most stable oxidation state. These states are all known in solution, for example Pu" as Pu ", and Pu as PuOj. PuOl" is analogous to UO , which is the stable uranium ion in solution. Each oxidation state is characterised by a different colour, for example PuOj is pink, but change of oxidation state and disproportionation can occur very readily between the various states. The chemistry in solution is also complicated by the ease of complex formation. However, plutonium can also form compounds such as oxides, carbides, nitrides and anhydrous halides which do not involve reactions in solution. Hence for example, it forms a violet fluoride, PuFj. and a brown fluoride. Pup4 a monoxide, PuO (probably an interstitial compound), and a stable dioxide, PUO2. The dioxide was the first compound of an artificial element to be separated in a weighable amount and the first to be identified by X-ray diffraction methods. [Pg.444]

Evidence foi the anionic complex PuCP is the precipitation of complex halides such as Cs2PuClg from concentrated HCl (aq). The ability of Pu(IV) to form stable nitrate complexes provides the basis for the Purex and ion-exchange (qv) process used in the chemical processing of Pu (107). Pu(VI) is similar to Pu(IV) in its abihty to form complex ions. Detailed reviews of complex ion formation by aqueous plutonium are available (23,94,105). [Pg.199]

The pattern of iridium halides resembles rhodium, with the higher oxidation states only represented by fluorides. The instability of iridium(IV) halides, compared with stable complexes IrCl4L2 and the ions IrX (X = Cl, Br, I), though unexpected, finds parallels with other metals, such as plutonium. Preparations of the halides include [19]... [Pg.80]

Complex chlorides of plutonium (34, 41) do not present such a wide range of formulae as the complex fTuorides but we have at hand thermodynamic information on two important species which have also been characterized with other actinides. In table II we have disregarded the complex halides for which no thermodynamic data are available. The enthalpy of formation of Cs2NaPuClg(c) (55) and Cs2PuClg(c) (56) have been obtained from enthalpy of solution measurements."The selected (8) values are AHf(Cs2NaPuCl6,c) =... [Pg.87]

The first step is diffusion controlled while the second represents the formation of an outer sphere complex in which the metal ion and the ligand are separated by at least one molecule to water. In the final step, this outer sphere complex ejects the water and forms an inner sphere complex in which the metal and ligand are directly associated. Some ligands cannot displace the water and complexation apparently terminates with the formation of the outer sphere complex. Plutonium cations form both inner and outer sphere complexes, depending on the ligand pK. For trivalent plutonium, we can assign a predominant outer sphere character to the halide, nitrate, sulfonate and trichloroacetate complexes and an inner sphere character to the fluoride, iodate, sulfate and acetate complexes (23). A study of Am , Th and complexation... [Pg.226]

Tn reviewing the chemistry of the actinides as a group, the simplest approach is to consider each valence state separately. In the tervalent state, and such examples of the divalent state as are known, the actinides show similar chemical behavior to the lanthanides. Experimental diflB-culties with the terpositive actinides up to plutonium are considerable because of the ready oxidation of this state. Some correlation exists with the actinides in studies of the lanthanide tetrafluorides and fluoro complexes. For other compounds of the 4-valent actinides, protactinium shows almost as many similarities as dijSerences between thorium and the uranium-americium set thus investigating the complex forming properties of their halides has attracted attention. In the 5- and 6-valent states, the elements from uranium to americium show a considerable degree of chemical similarity. Protactinium (V) behaves in much the same way as these elements in the 5-valent state except for water, where its hydrolytic behavior is more reminiscent of niobium and tantalum. [Pg.1]

Tetrachloride and tetrabromide complexes are known for thorium, protactinium, uranium, neptunium, and plutonium. These are similarly produced by halide-based oxidation of metals or hydrides, or by halogenation of oxides. A common structural type is reported for most compounds. The reported structure of thorium tetrachloride reveals that the coordination geometry about the metal is dodecahedral.The compounds are generally volatile and can be sublimed. The gas-phase electron diffraction structure of suggests that the molecule is... [Pg.231]

Isomorphism among compounds of the actinides is common and only a few examples need be given. The dioxides, MO2, of thorium, uranium, neptunium, plutonium and americium all have a fluorite lattice. The trihalides of the transuranic elements are isomorphous not only with the corresponding trihalides of actinium and uranium but also with those of the lanthanides. Isomorphism is also exhibited in many complex halides thus thorium, ura-... [Pg.444]

Attempts to make the octamethylplutonocene derivative by addition of tetramethyl[8]annulene dianion to the tetrachloride resulted in the reduction of Pu(IV) by the tetramethyl[8]annulene dianion to Pu(III).i When the borohydride complexes of neptunium and plutonium are used in place of the halide salts acceptable yields of the bis(tetra-roethyl[8]annulene) complexes were obtained.21... [Pg.81]


See other pages where Plutonium halide complexes is mentioned: [Pg.79]    [Pg.203]    [Pg.75]    [Pg.192]    [Pg.220]    [Pg.19]    [Pg.197]    [Pg.289]    [Pg.220]    [Pg.18]    [Pg.424]    [Pg.649]    [Pg.203]    [Pg.88]    [Pg.227]    [Pg.444]    [Pg.84]    [Pg.29]    [Pg.201]    [Pg.202]    [Pg.211]    [Pg.226]    [Pg.230]    [Pg.253]    [Pg.28]    [Pg.74]    [Pg.496]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Halide complexation

Halides complex

Plutonium complexes

Plutonium halides

© 2024 chempedia.info