Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Physical Alumina

The acid monolayers adsorb via physical forces [30] however, the interactions between the head group and the surface are very strong [29]. While chemisorption controls the SAMs created from alkylthiols or silanes, it is often preceded by a physical adsorption step [42]. This has been shown quantitatively by FTIR for siloxane polymers chemisorbing to alumina illustrated in Fig. XI-2. The fact that irreversible chemisorption is preceded by physical adsorption explains the utility of equilibrium adsorption models for these processes. [Pg.395]

Fig. XI-2. Variation of physically adsorbed (Pp) and chemically adsorbed (Pc) segments as a function of time for cyclic polymethylsiloxane adsorbing from CCI4 onto alumina (from Ref. 43). Note that the initial physisoiption is overcome by chemical adsorption as the final state is reached. [T. Cosgrove, C. A. Prestidge, and B. Vincent, J. Chem. Soc. Faraday Trans., 86(9), 1377-1382 (1990). Reproduced by permission of The Royal Society of Chemistry.]... Fig. XI-2. Variation of physically adsorbed (Pp) and chemically adsorbed (Pc) segments as a function of time for cyclic polymethylsiloxane adsorbing from CCI4 onto alumina (from Ref. 43). Note that the initial physisoiption is overcome by chemical adsorption as the final state is reached. [T. Cosgrove, C. A. Prestidge, and B. Vincent, J. Chem. Soc. Faraday Trans., 86(9), 1377-1382 (1990). Reproduced by permission of The Royal Society of Chemistry.]...
XI-1C) as well as alongside it. The infrared spectrum of CO2 adsorbed on 7-alumina suggests the presence of both physically and chemically adsorbed molecules [3]. [Pg.601]

A detailed study of the physical and chemical adsorption of water on three xerogels, ferric oxide, alumina and titania, as well as on silica (cf. p. 272) has been carried out by Morimoto and his co-workers. Each sample was outgassed at 600°C for 4 hours, the water isotherm determined at or near 20°C, and a repeat isotherm measured after an outgassing at 30 C. The procedure was repeated on the same sample after it had been evacuated at a... [Pg.276]

Testing. Chemical analyses are done on all manufactured abrasives, as well as physical tests such as sieve analyses, specific gravity, impact strength, and loose poured density (a rough measure of particle shape). Special abrasives such as sintered sol—gel aluminas require more sophisticated tests such as electron microscope measurement of a-alumina crystal si2e, and indentation microhardness. [Pg.13]

Diethyl Ketone. Diethyl ketone [96-22-0] (3-pentanone) is isomeric with methyl / -propyl ketone (2-pentanone), which has similar solvent and physical properties. Diethyl ketone is produced by the decarboxylation of propionic acid over Mn02—alumina (165), Zr02 (166), or Zr02 or Th02 on Ti02 (167,168). Diethyl ketone can also be produced by the hydrocarbonylation of ethylene (169—171). It is used as a solvent and a reaction intermediate. [Pg.493]

Catalytic properties are dependent on physical form, principally the exposed surface area which is a function of particle size. Industrial PGM catalysts are in the form of finely divided powder, wine, or gauze, or supported on substrates such as carbon or alumina (see Catalysis Catalysts, supported). [Pg.172]

Since 1976, these forms of acids have become a significant environmental concern from both a physical handling and disposal perspective. This concern has fueled much development work toward soHd acid catalysts, including zeoHtes, siHca —aluminas, and clays (107,108). [Pg.53]

Table 5. Physical Properties of Alumina, Silica, and Zirconia Refractory Brick ... Table 5. Physical Properties of Alumina, Silica, and Zirconia Refractory Brick ...
Calcium—Silicon. Calcium—silicon and calcium—barium—siUcon are made in the submerged-arc electric furnace by carbon reduction of lime, sihca rock, and barites. Commercial calcium—silicon contains 28—32% calcium, 60—65% siUcon, and 3% iron (max). Barium-bearing alloys contains 16—20% calcium, 9—12% barium, and 53—59% sihcon. Calcium can also be added as an ahoy containing 10—13% calcium, 14—18% barium, 19—21% aluminum, and 38—40% shicon These ahoys are used to deoxidize and degasify steel. They produce complex calcium shicate inclusions that are minimally harm fill to physical properties and prevent the formation of alumina-type inclusions, a principal source of fatigue failure in highly stressed ahoy steels. As a sulfide former, they promote random distribution of sulfides, thereby minimizing chain-type inclusions. In cast iron, they are used as an inoculant. [Pg.541]

Transition aluminas are good catalyst supports because they are inexpensive and have good physical properties. They are mechanically stable, stable at relatively high temperatures even under hydrothermal conditions, ie, in the presence of steam, and easily formed in processes such as extmsion into shapes that have good physical strength such as cylinders. Transition aluminas can be prepared with a wide range of surface areas, pore volumes, and pore size distributions. [Pg.173]

Beneficiation (2,11,12,21—27) iavolves a process or series of processes whereby the chemical and/or physical properties and characteristics of raw materials are modified to render the raw material more processible. The extent of beneficiation is determined by a combination of the starting raw materials, the processiag scheme, the desired properties of the product, and economics. Powder cost iacreases with iacreased beneficiation consequently, low value-added clay raw materials used to produce iaexpensive stmctural clay products typically undergo a minimum of beneficiation, whereas higher value-added alumina powders undergo more extensive beneficiation. [Pg.306]

The small (10 -lm) coating particles are typically aluminum oxide [1344-28-1/, Al O. These particles can have BET surface areas of 100 to 300 m /g. The thermal and physical properties of alumina crystalline phases vary according to the starting phase (aluminum hydroxide or hydrate) and thermal treatment (see ALUMINUM COMPOUNDS, ALUMINUM OXIDE). [Pg.485]

Alumina is used because it is relatively inert and provides the high surface area needed to efftciendy disperse the expensive active catalytic components. However, no one alumina phase possesses the thermal, physical, and chemical properties ideal for the perfect activated coating layer. A great deal of research has been carried out in search of modifications that can make one or more of the alumina crystalline phases more suitable. Eor instance, components such as ceria, baria, lanthana, or 2irconia are added to enhance the thermal characteristics of the alumina. Eigure 6 shows the thermal performance of an alumina-activated coating material. [Pg.485]

In this article, we will discuss the use of physical adsorption to determine the total surface areas of finely divided powders or solids, e.g., clay, carbon black, silica, inorganic pigments, polymers, alumina, and so forth. The use of chemisorption is confined to the measurements of metal surface areas of finely divided metals, such as powders, evaporated metal films, and those found in supported metal catalysts. [Pg.737]

In particular, emphasis will be placed on the use of chemisorption to measure the metal dispersion, metal area, or particle size of catalytically active metals supported on nonreducible oxides such as the refractory oxides, silica, alumina, silica-alumina, and zeolites. In contrast to physical adsorption, there are no complete books devoted to this aspect of catalyst characterization however, there is a chapter in Anderson that discusses the subject. [Pg.740]

Life and reliability data of / "-alumina tubes have been reported by Barow[24], Table 7 includes the dimensions and physical properties of / "-alumina tubes, and Table 8 shows the resistivity of / " -alumina tubes at 300 and 350 °C. The resistivity at 350 °C reported by Heavens [25] is somewhat lower. The resistivity of / " -alumina remains nearly constant even when zirconia is added (Fig. 14). [Pg.581]

Table 7. Dimensions and physical properties of p" -alumina tubes (laboratory-made)... Table 7. Dimensions and physical properties of p" -alumina tubes (laboratory-made)...
This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]


See other pages where Physical Alumina is mentioned: [Pg.2702]    [Pg.252]    [Pg.278]    [Pg.412]    [Pg.452]    [Pg.458]    [Pg.458]    [Pg.119]    [Pg.136]    [Pg.238]    [Pg.454]    [Pg.153]    [Pg.160]    [Pg.167]    [Pg.258]    [Pg.212]    [Pg.577]    [Pg.173]    [Pg.194]    [Pg.512]    [Pg.556]    [Pg.458]    [Pg.2186]    [Pg.138]    [Pg.215]    [Pg.276]    [Pg.53]    [Pg.289]    [Pg.180]    [Pg.249]    [Pg.80]    [Pg.334]   
See also in sourсe #XX -- [ Pg.612 ]




SEARCH



Activated alumina physical properties

Alumina physical properties

Chromia-alumina catalysts physical properties

© 2024 chempedia.info