Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photosynthetic structures

in chloroplasts the electrons of photosystem II go to Qa/Qb but not just in a cyclic fashion, as these quinones are coupled to non-cyclic electrons from H20 giving 02. [Pg.172]

The invention of aerobic photosynthesis, the light-driven oxidation of water to oxygen, stands as one of the pivotal evolutionary innovations in the history of life on Earth. The process is carried out only at the oxygen-evolving complex (OEC) of PSII in plants and algae, as well as in cyanobacteria. Despite the biological uniqueness of water oxidation to 02, several of the core proteins of PSII have homologues in the so-called type I and type II anaerobic photosynthetic reaction [Pg.172]


ON THE MECHANISM OF BETAINE PROTECTION OF PHOTOSYNTHETIC STRUCTURES IN HIGH ALT ENVIRONK NT 2... [Pg.957]

On the Mechanism of Betaine Protection of Photosynthetic Structures in High Salt Environment 957... [Pg.3801]

Tremolieres A, and Siegenthaler P-A. Reconstitution of photosynthetic structures and activities with lipids. Advances in Photosynthesis and Respiration. Lipids in Photosynthesis Structure, Function and Genetics (Siegenthaler P-A, ed). 1998 6 175-189. Kluwer Academic Publishers, Dordrecht. [Pg.141]

Klimov VV and Krasnovsky AA (1981) Pheophytin as the primary electron acceptor in photosystem 2 reaction centers, Photosynthetica 15, 592-609. Kramer H and Mathis P (1980) Quantum yield and rate of formation of the carotenoid triplet state in photosynthetic structures, Biochim. Biophys. [Pg.332]

Stanley R J, King B and Boxer S G 1996 Excited state energy transfer pathways in photosynthetic reaction centers. 1. Structural symmetry effected. Phys. Chem. 100 12 052-9... [Pg.2000]

Deisenhofer J, Epp O, Miki K, Huber R and Michei H 1984 X-ray structure anaiysis of a membrane-protein compiex eiectron density map at 3 A resoiution and a modei of the chromophores of the photosynthetic reaction center from Rhode pseudomonas viridis J. Mol. Biol. 180 385-98... [Pg.2994]

Vos M H, Jones M R, Hunter C N, Breton J, Lambry J C and Martin J L 1996 Femtosecond spectroscopy and vibrational coherence of membrane-bound RCs of Rhodobacfe/ sp/raero/des genetically modified at positions M210 and LI 81 The Reaction Center of Photosynthetic Bacteria—Structure and Dynamics ed M E Michel-Beyerle (Berlin Springer) pp 271-80... [Pg.2995]

Fetisova Z G, Borisov A Y and Fok M V 1985 Analysis of structure-function correlations in light-harvesting photosynthetic antenna—structure optimization parameters J. Theoret. Biol. 112 41-75... [Pg.3031]

T Ichiye. A dawning light The beginnings of an understanding of the photosynthetic reaction center. Structure 4 1009-1012, 1996. [Pg.414]

Despite considerable efforts very few membrane proteins have yielded crystals that diffract x-rays to high resolution. In fact, only about a dozen such proteins are currently known, among which are porins (which are outer membrane proteins from bacteria), the enzymes cytochrome c oxidase and prostaglandin synthase, and the light-harvesting complexes and photosynthetic reaction centers involved in photosynthesis. In contrast, many other membrane proteins have yielded small crystals that diffract poorly, or not at all, using conventional x-ray sources. However, using the most advanced synchrotron sources (see Chapter 18) it is now possible to determine x-ray structures from protein crystals as small as 20 pm wide which will permit more membrane protein structures to be elucidated. [Pg.224]

Figure 12.14 The three-dimensional structure of a photosynthetic reaction center of a purple bacterium was the first high-resolution structure to be obtained from a membrane-bound protein. The molecule contains four subunits L, M, H, and a cytochrome. Subunits L and M bind the photosynthetic pigments, and the cytochrome binds four heme groups. The L (yellow) and the M (red) subunits each have five transmembrane a helices A-E. The H subunit (green) has one such transmembrane helix, AH, and the cytochrome (blue) has none. Approximate membrane boundaries are shown. The photosynthetic pigments and the heme groups appear in black. (Adapted from L. Stryer, Biochemistry, 3rd ed. New York ... Figure 12.14 The three-dimensional structure of a photosynthetic reaction center of a purple bacterium was the first high-resolution structure to be obtained from a membrane-bound protein. The molecule contains four subunits L, M, H, and a cytochrome. Subunits L and M bind the photosynthetic pigments, and the cytochrome binds four heme groups. The L (yellow) and the M (red) subunits each have five transmembrane a helices A-E. The H subunit (green) has one such transmembrane helix, AH, and the cytochrome (blue) has none. Approximate membrane boundaries are shown. The photosynthetic pigments and the heme groups appear in black. (Adapted from L. Stryer, Biochemistry, 3rd ed. New York ...
The structurally similar L and M subunits are related by a pseudo-twofold symmetry axis through the core, between the helices of the four-helix bundle motif. The photosynthetic pigments are bound to these subunits, most of them to the transmembrane helices, and they are also related by the same twofold symmetry axis (Figure 12.15). The pigments are arranged so that they form two possible pathways for electron transfer across the membrane, one on each side of the symmetry axis. [Pg.237]

Figure 12.15 Schematic arrangement of the photosynthetic pigments in the reaction center of Rhodopseudomonas viridis. The twofold symmetry axis that relates the L and the M subunits is aligned vertically in the plane of the paper. Electron transfer proceeds preferentially along the branch to the right. The periplasmic side of the membrane is near the top, and the cytoplasmic side is near the bottom of the structure. (From B. Furugren, courtesy of the Royal Swedish Academy of Science.)... Figure 12.15 Schematic arrangement of the photosynthetic pigments in the reaction center of Rhodopseudomonas viridis. The twofold symmetry axis that relates the L and the M subunits is aligned vertically in the plane of the paper. Electron transfer proceeds preferentially along the branch to the right. The periplasmic side of the membrane is near the top, and the cytoplasmic side is near the bottom of the structure. (From B. Furugren, courtesy of the Royal Swedish Academy of Science.)...
Figure 12.21 Schematic diagram of the relative positions of bacteriochlorophylls (green) in the photosynthetic membrane complexes LHl, LH2, and the reaction center. The special pair of bacteriochlorophyll molecules in the reaction center is located at the same level within the membrane as the periplasmic bacteriochlorophyll molecules Chi 875 in LHl and the Chi 850 in LH2. (Adapted from W. Kiihlbrandt, Structure 3 521-525, 1995.)... Figure 12.21 Schematic diagram of the relative positions of bacteriochlorophylls (green) in the photosynthetic membrane complexes LHl, LH2, and the reaction center. The special pair of bacteriochlorophyll molecules in the reaction center is located at the same level within the membrane as the periplasmic bacteriochlorophyll molecules Chi 875 in LHl and the Chi 850 in LH2. (Adapted from W. Kiihlbrandt, Structure 3 521-525, 1995.)...
Figure 12.22 Schematic diagram showing the flow of excitation energy in the bacterial photosynthetic apparatus. The energy of a photon absorbed by LH2 spreads rapidly through the periplasmic ring of bacterio-chlorophyll molecules (green). Where two complexes touch in the membrane, the energy can be transmitted to an adjacent LH2 ring. From there it passes by the same mechanism to LHl and is finally transmitted to the special chlorophyll pair in the reaction center. (Adapted from W. Kiihlbrandf, Structure 3 521-525, 1995.)... Figure 12.22 Schematic diagram showing the flow of excitation energy in the bacterial photosynthetic apparatus. The energy of a photon absorbed by LH2 spreads rapidly through the periplasmic ring of bacterio-chlorophyll molecules (green). Where two complexes touch in the membrane, the energy can be transmitted to an adjacent LH2 ring. From there it passes by the same mechanism to LHl and is finally transmitted to the special chlorophyll pair in the reaction center. (Adapted from W. Kiihlbrandf, Structure 3 521-525, 1995.)...
Michel, H., Deisenhofer, J. Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. BicKhemistry 27 1-7, 1988. [Pg.249]

Deisenhofer, J., et al. Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 A resolution. Nature 318 618-624, 1985. [Pg.249]

McDermott, G., et al. Crystal structure of an integral membrane light-barvesting complex from photosynthetic bacteria. Nature 374 517-521, 1995. [Pg.249]

Prokaryotic cells have only a single membrane, the plasma membrane or cell membrane. Because they have no other membranes, prokaryotic cells contain no nucleus or organelles. Nevertheless, they possess a distinct nuclear area where a single circular chromosome is localized, and some have an internal membranous structure called a mesosome that is derived from and continuous with the cell membrane. Reactions of cellular respiration are localized on these membranes. In photosynthetic prokaryotes such as the cyanobacteria,... [Pg.24]

The structure of the UQ-cyt c reductase, also known as the cytochrome bc complex, has been determined by Johann Deisenhofer and his colleagues. (Deisenhofer was a co-recipient of the Nobel Prize in Chemistry for his work on the structure of a photosynthetic reaction center [see Chapter 22]). The complex is a dimer, with each monomer consisting of 11 protein subunits and 2165 amino acid residues (monomer mass, 248 kD). The dimeric structure is pear-shaped and consists of a large domain that extends 75 A into the mito-... [Pg.686]


See other pages where Photosynthetic structures is mentioned: [Pg.458]    [Pg.90]    [Pg.93]    [Pg.20]    [Pg.171]    [Pg.172]    [Pg.173]    [Pg.116]    [Pg.1797]    [Pg.458]    [Pg.90]    [Pg.93]    [Pg.20]    [Pg.171]    [Pg.172]    [Pg.173]    [Pg.116]    [Pg.1797]    [Pg.59]    [Pg.1590]    [Pg.1611]    [Pg.2511]    [Pg.3031]    [Pg.532]    [Pg.348]    [Pg.351]    [Pg.2134]    [Pg.403]    [Pg.235]    [Pg.240]    [Pg.242]    [Pg.247]    [Pg.25]    [Pg.715]   
See also in sourсe #XX -- [ Pg.171 , Pg.172 , Pg.173 ]




SEARCH



Bacterial photosynthetic reaction centers crystal structures

Photosynthetic apparatus, understanding structure

Photosynthetic bacteria crystal structure

Photosynthetic bacteria protein structure

Photosynthetic bacteria reaction center structure

Structural Aspects of the Photosynthetic Apparatus

© 2024 chempedia.info