Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photosynthesis in chloroplasts

Figure 5-1. Schematic representation of the three stages of photosynthesis in chloroplasts (1) The absorption of light can excite photosynthetic pigments, leading to the photochemical events in which electrons are donated by special chlorophylls. (2) The elections are then transferred along a series of molecules, causing the oxidized form of nicotinamide adenine dinucleotide phosphate (NADP+) to become the reduced form (NADPH) ATP formation is coupled to the electron transfer steps. (3) The biochemistry of photosynthesis can proceed in the dark and requires 3 mol of ATP and 2 mol of NADPH per mole of C02 fixed into a carbohydrate, represented in the figure by (CH20). Figure 5-1. Schematic representation of the three stages of photosynthesis in chloroplasts (1) The absorption of light can excite photosynthetic pigments, leading to the photochemical events in which electrons are donated by special chlorophylls. (2) The elections are then transferred along a series of molecules, causing the oxidized form of nicotinamide adenine dinucleotide phosphate (NADP+) to become the reduced form (NADPH) ATP formation is coupled to the electron transfer steps. (3) The biochemistry of photosynthesis can proceed in the dark and requires 3 mol of ATP and 2 mol of NADPH per mole of C02 fixed into a carbohydrate, represented in the figure by (CH20).
Finally, and most importantly, the two chloroplast photosystems differ significantly in their functions only PSII splits water to form oxygen, whereas only PSI transfers electrons to the final electron acceptor, NADP". Photosynthesis in chloroplasts can follow a linear or cyclic pathway, again like green and purple bacteria. The linear pathway, which we discuss first, can support carbon fixation as well as ATP synthesis. In contrast, the cyclic pathway supports only ATP synthesis and generates no reduced NADPH for use in carbon fixation. Photosynthetic algae and cyanobacteria contain two photosystems analogous to those in chloroplasts. [Pg.338]

Reflect and Apply Antimycin A is an inhibitor of photosynthesis in chloroplasts. Suggest a possible site of action, and indicate the... [Pg.669]

What is the overall stoichiometry of photosynthesis in chloroplasts If eight photons are absorbed the net yield is... [Pg.335]

Krause, G.H. Laasch, H. (1987). Energy-dependent chlorophyll fluorescence quenching in chloroplasts correlated with quantum yield of photosynthesis. Zeitschrift fiir Naturforschung, 42, 581. ... [Pg.67]

In plants, the photosynthesis reaction takes place in specialized organelles termed chloroplasts. The chloroplasts are bounded in a two-membrane envelope with an additional third internal membrane called thylakoid membrane. This thylakoid membrane is a highly folded structure, which encloses a distinct compartment called thylakoid lumen. The chlorophyll found in chloroplasts is bound to the protein in the thylakoid membrane. The major photosensitive molecules in plants are the chlorophylls chlorophyll a and chlorophyll b. They are coupled through electron transfer chains to other molecules that act as electron carriers. Structures of chlorophyll a, chlorophyll b, and pheophytin a are shown in Figure 7.9. [Pg.257]

Integration of PS II and PS I via cyt b6f in chloroplasts (Z scheme of photosynthesis). Pheo a represents pheophytin pQA and pQB represent phytoquinone A and B, respectively A, and At represent electron acceptor chlorophylls, respectively pc represents plastocyanin and Fd represents ferridoxin. [Pg.260]

In green algae and higher plants, photosynthesis occurs in chloroplasts. These are organelles, which—like mitochondria—are surrounded by two membranes and contain their own DNA. In their interior, the stroma, thyla-... [Pg.128]

The toxic effects of ozone in plant systems have been studied for some time, yet the actual mechanisms of injury are not fully understood. In addition to visible necrosis which appears largely on upper leaf surfaces, many other physiological and biochemical effects have been recorded ( ). One of the first easily measurable effects is a stimulation of respiration. Frequently, however, respiration may not increase without concomitant visible injury. Furthermore, photosynthesis in green leaves as measured by CO2 assimilation, may decrease. It is well known that ozone exposure is accompanied by a dramatic increase in free pool amino acids ( ). Ordin and his co-workers ( ) have clearly shown the effect of ozone on cell wall biosynthesis. In addition, ozone is known to oxidize certain lipid components of the cell ( ), to affect ribosomal RNA (16) and to alter the fine structure of chloroplasts (7 ). [Pg.8]

Light-driven electron transfer in plant chloroplasts during photosynthesis is accomplished by multienzyme systems in the thylakoid membrane. Our current picture of photosynthetic mechanisms is a composite, drawn from studies of plant chloroplasts and a variety of bacteria and algae. Determination of the molecular structures of bacterial photosynthetic complexes (by x-ray crystallography) has given us a much improved understanding of the molecular events in photosynthesis in general. [Pg.730]

Photosynthesis in vascular plants takes place in chloroplasts. In the C02-assimilating reactions (the Calvin cycle), ATP and NADPH are used to reduce C02 to triose phosphates. These reactions occur in three stages the fixation reaction itself, catalyzed by rubisco reduction of the resulting 3-phosphoglycerate to glyceraldehyde 3-phosphate and regeneration of ribulose 1,5-bisphosphate from triose phosphates. [Pg.766]

In the photosynthetic cells of plants, fatty acid synthesis occurs not in the cytosol but in the chloroplast stroma (Fig. 21-8). This makes sense, given that NADPH is produced in chloroplasts by the light reactions of photosynthesis ... [Pg.794]

The oxygen formed clearly comes from H20 and not from C02, because photosynthesis in the presence of water labeled with lgO produces oxygen labeled with 180, whereas carbon dioxide labeled with 180 does not give oxygen labeled with 180. Notice that the oxidation of the water produces two electrons, and that the formation of NADPH from NADP requires two electrons. These reactions occur at different locations within the chloroplasts and in the process of transferring electrons from the water oxidation site to the NADP reduction site, adenosine diphosphate (ADP) is converted to adenosine triphosphate (ATP see Section 15-5F for discussion of the importance of such phosphorylations). Thus electron transport between the two photoprocesses is coupled to phosphorylation. This process is called photophosphorylation (Figure 20-7). [Pg.941]

These are involved in a wide range of electron-transfer processes and in certain oxidation-reduction enzymes, whose function is central to such important processes as the nitrogen cycle, photosynthesis, electron transfer in mitochondria and carbon dioxide fixation. The iron-sulfur proteins display a wide range of redox potentials, from +350 mV in photosynthetic bacteria to —600 mV in chloroplasts. [Pg.626]


See other pages where Photosynthesis in chloroplasts is mentioned: [Pg.56]    [Pg.177]    [Pg.180]    [Pg.153]    [Pg.12]    [Pg.403]    [Pg.438]    [Pg.56]    [Pg.3319]    [Pg.284]    [Pg.56]    [Pg.177]    [Pg.180]    [Pg.153]    [Pg.12]    [Pg.403]    [Pg.438]    [Pg.56]    [Pg.3319]    [Pg.284]    [Pg.317]    [Pg.736]    [Pg.136]    [Pg.655]    [Pg.116]    [Pg.132]    [Pg.340]    [Pg.92]    [Pg.560]    [Pg.560]    [Pg.93]    [Pg.283]    [Pg.357]    [Pg.724]    [Pg.733]    [Pg.771]    [Pg.517]    [Pg.706]    [Pg.1298]    [Pg.1302]    [Pg.415]    [Pg.1297]    [Pg.1317]    [Pg.277]    [Pg.114]    [Pg.331]    [Pg.332]   
See also in sourсe #XX -- [ Pg.541 , Pg.542 , Pg.542 , Pg.544 ]




SEARCH



Chloroplasts, photosynthesis

In photosynthesis

© 2024 chempedia.info