Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoisomerizable FAD cofactor

To optimize the photoswitchable bioelectrocatalytic features of the protein, site-specific functionalization or mutation of the active site microenvironment is essential. This was accomplished by a semisynthetic approach involving the reconstitution of the flavoenzyme-glucose oxidase with a semisynthetic photoisomerizable FAD cofactor (Scheme 9).1511 The photoisomerizable nitrospiropyran carboxylic acid (24) was covalently coupled to N6-(2-aminoethyl)-FAD (25), to yield the synthetic photoisomerizable nitrospiropyran-FAD cofactor 26a (Scheme 9(A)). The native FAD cofactor was removed from glucose oxidase, and the synthetic photoisomeriz-able-FAD cofactor 26a was reconstituted into the apo-glucose oxidase (apo-GOx), to yield the photoisomerizable enzyme 27a (Scheme 9(B)). This reconstituted protein... [Pg.188]

Figure 3-30. Organization of a photoswitchable glucose oxidase electrode for the bioelectrocatalyzed oxidation of glucose (A) The synthesis of the photoisomerizable nitrospiropyran-FAD cofactor. (B) The reconstitution of apo-glucose oxidase, apo-GOx, with the photoisomerizable FAD-cofactor (20a). (C) The assembly of the reconstituted photoisomerizable GOx on an electrode surface and the photoswitching of the bioelectrocatalytic function of the enzyme electrode in the presence of ferrocene carboxylic acid (21) as mediator. Figure 3-30. Organization of a photoswitchable glucose oxidase electrode for the bioelectrocatalyzed oxidation of glucose (A) The synthesis of the photoisomerizable nitrospiropyran-FAD cofactor. (B) The reconstitution of apo-glucose oxidase, apo-GOx, with the photoisomerizable FAD-cofactor (20a). (C) The assembly of the reconstituted photoisomerizable GOx on an electrode surface and the photoswitching of the bioelectrocatalytic function of the enzyme electrode in the presence of ferrocene carboxylic acid (21) as mediator.
A further approach to controlling electrical communication between redox proteins and their electrode support through a photo-command interface includes photo stimulated electrostatic control over the electrical contact between the redox enzyme and the electrode in the presence of a diffusional electron mediator (Scheme 12).[58] A mixed monolayer, consisting of the photoisomerizable thiolated nitrospiropyran units 30 and the semi-synthetic FAD cofactor 25, was assembled on an Au electrode. Apo-glucose oxidase was reconstituted onto the surface FAD sites to yield an aligned enzyme-layered electrode. The surface-reconstituted enzyme (2 x 10-12 mole cm-2) by itself lacked electrical communication with the electrode. In the presence of the positively charged, protonated diffusional electron mediator l-[l-(dimethylamino)ethyl]ferrocene 29, however, the bioelectrocatalytic functions of the enzyme-layered electrode could be activated and controlled by the photoisomerizable component co-immobilized in the monolayer assembly (Figure 12). In the... [Pg.195]

Scheme 12 Surface reconstitution of apo-glucose oxidase on a mixed monolayer associated with an electrode consisting of an FAD cofactor and photoisomerizable nitrospiropyran units, and reversible photoswitching of the bioelectrocatalytic functions of the enzyme electrode. Scheme 12 Surface reconstitution of apo-glucose oxidase on a mixed monolayer associated with an electrode consisting of an FAD cofactor and photoisomerizable nitrospiropyran units, and reversible photoswitching of the bioelectrocatalytic functions of the enzyme electrode.
Figure 12.4 Photoinduced bioelectrocatalyzed oxidation of glucose to gluconic acid by glucose oxidase (COD) reconstituted with a nitrospiropyran-modified FAD cofactor (Sp-FAD) assembled as a monolayer on the Au electrode. Fhe Sp-FAD reveals reversible photoisomeriz-able properties yielding nitromerocyanine-FAD isomer (MRH+-FAD) [34]... Figure 12.4 Photoinduced bioelectrocatalyzed oxidation of glucose to gluconic acid by glucose oxidase (COD) reconstituted with a nitrospiropyran-modified FAD cofactor (Sp-FAD) assembled as a monolayer on the Au electrode. Fhe Sp-FAD reveals reversible photoisomeriz-able properties yielding nitromerocyanine-FAD isomer (MRH+-FAD) [34]...
The reconstitution method was suggested as a means to introduce the photoisomerizable unit into the vicinity of the biocatalytic redox-center, thereby generating a light-switchable bioelectrocatalyst that operates between fiilly switched ON and OFF states. Apo-glucose oxidase, apo-GOx, was reconstituted with the nitrospiropyran-FAD cofactor unit, (20), Fig. 3-30. [Pg.79]

Fig. 31a). The native FAD cofactor was extracted from GOx and the semisynthetic FAD cofactor was reconstituted into the apo-GOx (apo-GOx) (Fig. 31b). This reconstituted enzyme includes a photoisomerizable unit directly attached to the redox center of the enzyme, and hence, the enzyme is predisposed for optimized photoswitchable bioelectrocatalytic properties. The photoisomerizable enzyme was assembled on an Au-electrode as described in Fig. 31(c). The bioelectrocatalytic oxidation of glucose was stimulated in the presence of ferrocene carboxylic acid as a diffusional electron-transfer mediator. The (28a)-state of the reconstituted GOx was inactive for the bioelectrocatalytic transformation, whereas photoisomerization of the enzyme to the (28b)-state activated the system (Fig. 32). By the cyclic photoisomerization of the enzyme mono-layer between (28a) and (28b) states, the bioelectrocatalyzed oxidation of glucose was cycled between the off and on states, respectively (Fig. 32, inset). It was also found that the direction of the photo-bioelectrocatalytic switch of the (28a/28b)-FAD-reconstituted GOx is controlled by the electrical properties of the diffusional electron-transfer mediator [385]. With ferrocene dicarboxylic acid as a diffusional electron-transfer mediator, the enzyme in the (28a)-state was found to correspond to the switched off biocatalyst, while the (28b)-state exhibits switched on behavior. In the presence of the protonated 1-[1-(dimethylamino)ethyl]ferrocene, the direction of the photobioelectrocatalytic switch is reversed. This control of the photoswitch direction of the photoisomerizable GOx was attributed to electrostatic interactions between the diffusional electron-transfer mediator and the photoisomerizable unit linked to the FAD. The (28b)-state attracts the oxidized negatively charged... [Pg.613]


See other pages where Photoisomerizable FAD cofactor is mentioned: [Pg.189]    [Pg.219]    [Pg.230]    [Pg.219]    [Pg.230]    [Pg.230]    [Pg.568]    [Pg.189]    [Pg.219]    [Pg.230]    [Pg.219]    [Pg.230]    [Pg.230]    [Pg.568]    [Pg.114]    [Pg.196]    [Pg.2543]    [Pg.243]    [Pg.243]    [Pg.191]    [Pg.231]    [Pg.1777]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Cofactor

FAD

FAD cofactor

Photoisomerizables

© 2024 chempedia.info