Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photoelectron correlation spectroscopy

Light-scattering (12) and photoelectron correlation spectroscopy with time-averaged intensity measurements (13) have confirmed that poly(ethylene oxide) molecules aggregate in water solution as temperature is raised from 20°C to 90°C. This aggregation has been ascribed to hydrophobic interactions becoming dominant at higher temperatures. [Pg.157]

The structures of the new bicyclic peroxides have been established by the usual combination of physical techniques and chemical transformations. Here we highlight features of the H and 13C n.m.r. spectroscopic data that provide the best characterization of these compounds their reactions are discussed later. Information about the C-O-O-C dihedral angle in organic peroxides is potentially available from photoelectron (PE) spectroscopy. Measurements on comparatively rigid systems play an important part in establishing a soundly based experimental correlation, and the results obtained on several of these bicyclic peroxides are presented in this section also. [Pg.149]

FP, Fabry-Perot interferometer PCS, photon correlation spectroscopy TOA, time-of-arrival photoelectron statistics. [Pg.303]

Finally, similar effects can be seen in miscible polymer blends where the surface tension correlates with the enrichment of the lower-energy component at the surface as monitored by x-ray photoelectron spectroscopy [104],... [Pg.71]

Concelcao J, Laaksonen R T, Wang L S, Guo T, Nordlander P and Smalley R E 1995 Photoelectron spectroscopy of transition metal clusters correlation of valence electronic structure to reactivity Rhys. Rev. B 51 4668... [Pg.2403]

In this formulation, the electron density is expressed as a linear combination of basis functions similar in mathematical form to HF orbitals. A determinant is then formed from these functions, called Kohn-Sham orbitals. It is the electron density from this determinant of orbitals that is used to compute the energy. This procedure is necessary because Fermion systems can only have electron densities that arise from an antisymmetric wave function. There has been some debate over the interpretation of Kohn-Sham orbitals. It is certain that they are not mathematically equivalent to either HF orbitals or natural orbitals from correlated calculations. However, Kohn-Sham orbitals do describe the behavior of electrons in a molecule, just as the other orbitals mentioned do. DFT orbital eigenvalues do not match the energies obtained from photoelectron spectroscopy experiments as well as HF orbital energies do. The questions still being debated are how to assign similarities and how to physically interpret the differences. [Pg.42]

The X-ray photoelectron spectroscopy of metal halides and their complexes halogen binding energies and their correlation with structure. R. A. Walton, Coord. Chem. Rev., 1976,21, 63-91 (112). [Pg.44]

Most suitable for the examination of the surface is x-ray photoelectron spectroscopy, whereas the wettability determination can be established by a detailed interpretation of core flooding experiments and wettability index measurements. The results of such studies show that the organic carbon content in the surface is well correlated with the wetting behavior of the material characterized by petrophysical measurements [1467,1468]. [Pg.231]

While characterization of the electrode prior to use is a prerequisite for a reliable correlation between electrochemical behaviour and material properties, the understanding of electrochemical reaction mechanisms requires the analysis of the electrode surface during or after a controlled electrochemical experiment. Due to the ex situ character of photoelectron spectroscopy, this technique can only be applied to the emersed electrode, after the electrochemical experiment. The fact that ex situ measurements after emersion of the electrode are meaningful and still reflect the situation at the solid liquid interface has been discussed in Section 2.7. [Pg.98]

X-ray photoelectron spectroscopy (XPS) of electrodes was first applied to the oxidation of noble metal electrodes. Kim and Winograd investigated in 1971 the electrochemical formation of anodic oxides on Pt [10] and later on Au electrodes [60]. The electrochemical parameters of oxide formation on these noble metal electrodes were well characterized and enabled a direct correlation between ex situ XPS and in situ electrochemical analysis. [Pg.98]

The significance of the values calculated for the effective polarizability was first established with physical data, among them relaxation energies derived from a combination of X-ray photoelectron and Auger spectroscopy, as well as N-ls ESCA data53, 54). From our point of view, however, the most important applications of effective polarizability are to be found in correlating chemical reactivity data. Thus, the proton affinity (PA) of 49 unsubstituted alkylamines comprising primary, secondary and tertiary amines of a variety of skeletal types correlate directly with effective polarizability values (Fig. 22). [Pg.55]

The values of the ESP at the nuclear positions, as obtained from the electron and Hartree-Fock structure amplitudes for the mentioned crystals (using a K-model and corrected on self-potential) are given in table 2. An analysis shows that the experimental values of the ESP are near to the ab initio calculated values. However, both set of values in crystals differ from their analogs for the free atoms [5]. It was shown earlier (Schwarz M.E. Chem. Phys. Lett. 1970, 6, 631) that this difference in the electrostatic potentials in the nuclear positions correlates well with the binding energy of Is-electrons. So an ED-data in principle contains an information on the bonding in crystals, which is usually obtaining by photoelectron spectroscopy. [Pg.115]

From the experimental viewpoint 1. the analysis of the variation of photoionization cross sections (affecting the intensities of photoelectron spectroscopy), gives an insight into the orbital composition of the bands of the solid 2. the combination of direct and inverse photoemission provides a powerful tool to assess the structure of occupied and of empty states, and, in the case of localized 5 f states, permits the determination of a fundamental quantity, the Coulomb correlation energy, governing the physical properties of narrow bands. [Pg.197]

Photoelectron spectroscopy has demonstrated there is no linear correlation between the ionization energies and pKa values of azoles (84JHC269). [Pg.121]

X-Ray photoelectron spectroscopy (XPS) has been used129-131 to investigate several dithiolene ligands and complexes. Sano et al. correlated their results with Xa calculations, while Blomquist et a/.131 related theirs to EHT results. [Pg.616]

These may be generated by irradiating an atom with a beam of monochromatic X-rays or ultraviolet rays. X-ray and electron spectroscopy is one of the main methods used for studying the structure of atomic electronic shells, particularly inner ones, as well as the role of relativistic and correlation effects. A wealth of such information may also be obtained from the studies of angular distribution of photoelectrons. It is interesting to notice that with increase of the energy of X-rays the dipole approximation fails to correctly describe the angular distribution of electrons. [Pg.397]

In order to understand better these interesting systems without complications that might arise due to different preparation procedures, we compared oxygen-treated WC and Mo2C prepared by similar reduction/ carburization procedures from their respective oxides. The effects of pretreatment conditions were also studied. An attempt was made to correlate the kinetic behavior of these catalysts in n-hexane-H2 reactions with their physical properties obtained from X-ray diffraction (XRD), CO chemisorption, temperature-programed reaction (TPR) with flowing H2 or He, temperature programed desorption (TPD) of adsorbed NH3, and X-ray photoelectron spectroscopy (XPS). [Pg.490]


See other pages where Photoelectron correlation spectroscopy is mentioned: [Pg.374]    [Pg.2333]    [Pg.613]    [Pg.613]    [Pg.41]    [Pg.457]    [Pg.954]    [Pg.16]    [Pg.566]    [Pg.363]    [Pg.334]    [Pg.65]    [Pg.706]    [Pg.3]    [Pg.83]    [Pg.154]    [Pg.49]    [Pg.57]    [Pg.357]    [Pg.245]    [Pg.81]    [Pg.239]    [Pg.79]    [Pg.823]    [Pg.133]    [Pg.556]    [Pg.159]    [Pg.749]    [Pg.48]    [Pg.1032]    [Pg.23]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Correlated spectroscopy

Correlation spectroscopy

© 2024 chempedia.info