Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Photochemical reductive dissolution hematite

Faust and Hoffmann (1986) and Litter and Blesa (1988) who investigated the wavelength-dependence of the rate of photochemical reductive dissolution of iron(III)(hydr)oxides using hematite-bisulfite and maghemite-EDTA as model systems, respectively. [Pg.356]

Rate of the photochemical reductive dissolution of hematite, = d[Fe(II)]/dt, in the presence of oxalate as a function of the wavelength at constant incident light intensity (I0 = 1000 peinsteins "1 lr1). The hematite suspensions were deaerated initial oxalate concentration = 3.3 mM pH = 3. (In order to keep the rate of the thermal dissolution constant, a high enough concentration or iron(II), [Fe2+] = 0.15 mM, was added to the suspensions from the beginning. Thus, the rates correspond to dissolution rates due to the surface photoredox process). [Pg.356]

Since the reduction of adsorbed molecular oxygen competes with detachment of the reduced surface iron from the crystal lattice, it is the efficiency of detachment that decides to what extent oxygen inhibits the photochemical reductive dissolution of hydrous iron(III) oxides. The efficiency of detachment depends above all on the crystallinity of the iron(III) hydroxide phase and is expected to be much higher with iron(IIl) hydroxide phases less crystalline and thus less stable than hematite. Not only does the efficiency of the light-induced dissolution of iron(III) hydroxides depend on their crystal and surface structure, but so does the efficiency of photoxidation of electron donors. Leland and Bard (1987) have reported that the rate constants of photooxidation of oxalate and sulfite varies by about two orders of magnitude with different iron(III) oxides. From their data they concluded that this appears to be due to differences in crystal and surface structure rather than to difference in surface area, hydro-dynamic diameter, or band gap. ... [Pg.422]

Similar photo-induced reductive dissolution to that reported for lepidocrocite in the presence of citric acid has been observed for hematite (a-Fe203) in the presence of S(IV) oxyanions (42) (see Figure 3). As shown in the conceptual model of Faust and Hoffmann (42) in Figure 4, two major pathways may lead to the production of Fe(II)ag i) surface redox reactions, both photochemical and thermal (dark), involving Fe(III)-S(IV) surface complexes (reactions 3 and 4 in Figure 4), and ii) aqueous phase photochemical and thermal redox reactions (reactions 11 and 12 in Figure 4). However, the rate of hematite dissolution (reaction 5) limits the rate at which Fe(II)aq may be produced by aqueous phase pathways (reactions 11 and 12) by limiting the availability of Fe(III)aq for such reactions. The rate of total aqueous iron production (d[Fe(aq)]T/dt = d [Fe(III)aq] +... [Pg.432]

Desorption of the reduced metal ion is the rate determining step and is assisted by protons and oxalate ions. The reoxidized surface complex also desorbs owing to its altered molecular structure and is thus available for further reaction. The reductive dissolution step is faster than the initial complexation process. Photochemical dissolution of hematite in acidic oxalate solution is faster when air is excluded from the system (by purging with N2) than when air is present (Taxiarchou et al. 1997). [Pg.319]

Al substitution (0.09-0.16 mol mol ) had no definite effect on the photochemical dissolution of substituted goethite in oxalate at pH 2.6 (Cornell Schindler, 1987). On the other hand, Al substitution depressed the initial (linear) stage of dissolution of synthetic goethites and hematites in mixed dithionite/citrate/bicarbonate solutions (Fig. 12.22) (Torrent et al., 1987). As the variation in initial surface area has already been accounted for, the scatter of data in this figure is presumably due to variations in other crystal properties such as disorder and micropores. Norrish and Taylor (1961) noted that as Al substitution in soil goethites increased, the rate of reductive dissolution dropped (see also Jeanroy et al., 1991). [Pg.330]

In addition to the dark oxidation of S(IV) on surfaces, there may be photochemically induced processes as well. For example, irradiation of aqueous suspensions of solid a-Fe203 (hematite) containing S(IV) with light of A > 295 nm resulted in the production of Fe(II) in solution (Faust and Hoffmann, 1986 Faust et al., 1989 Hoffmann et al., 1995). This reductive dissolution of the hematite has been attributed to the absorption of light by surface Fe(III)-S(IV) complexes, which leads to the generation of electron-hole pairs, followed by an electron transfer in which the adsorbed S(IV) is oxidized to the SO-p radical anion. This initiates the free radical chemistry described earlier. [Pg.325]

Reductive dissolution of minerals also can occur as a photochemical reaction in the presence of organic ligands.32 An example of this light-mediated process is described briefly for hematite in the presence of oxalic acid in Eq. 1.9 and... [Pg.124]

As discussed in the previous section, a ligand-to-metal charge-transfer transition of the surface complex (mechanism 1) and/or a Fe -O"11 charge-transfer of hematite (mechanism 2) are the oscillators involved in the surface photoredox reaction, leading to reductive dissolution of hematite in the presence of oxalate. The elementary steps and the derivations of the rate expressions of photochemical surface iron(II) formation of mechanism 1 and 2 are outlined in reactions 16-19, Eqs. 20-26, reactions 27-31, and Eqs. 32-37, respectively. [Pg.416]


See other pages where Photochemical reductive dissolution hematite is mentioned: [Pg.355]    [Pg.357]    [Pg.425]    [Pg.425]    [Pg.183]    [Pg.337]    [Pg.393]   


SEARCH



Hematite

Hematite dissolution

Hematite photochemical dissolution

Hematite reduction

Photochemical reduction

Photochemical reductive dissolution

Reductants, reductive dissolution

Reductive dissolution

© 2024 chempedia.info