Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphoryl group acids

FIGURE 15.2 Enzymes regulated by covalent modification are called interconvertible enzymes. The enzymes protein kinase and protein phosphatase, in the example shown here) catalyzing the conversion of the interconvertible enzyme between its two forms are called converter enzymes. In this example, the free enzyme form is catalytically active, whereas the phosphoryl-enzyme form represents an inactive state. The —OH on the interconvertible enzyme represents an —OH group on a specific amino acid side chain in the protein (for example, a particular Ser residue) capable of accepting the phosphoryl group. [Pg.463]

Pyruvate kinase possesses allosteric sites for numerous effectors. It is activated by AMP and fructose-1,6-bisphosphate and inhibited by ATP, acetyl-CoA, and alanine. (Note that alanine is the a-amino acid counterpart of the a-keto acid, pyruvate.) Furthermore, liver pyruvate kinase is regulated by covalent modification. Flormones such as glucagon activate a cAMP-dependent protein kinase, which transfers a phosphoryl group from ATP to the enzyme. The phos-phorylated form of pyruvate kinase is more strongly inhibited by ATP and alanine and has a higher for PEP, so that, in the presence of physiological levels of PEP, the enzyme is inactive. Then PEP is used as a substrate for glucose synthesis in the pathway (to be described in Chapter 23), instead... [Pg.630]

Transfer of the phosphoryl group to ADP in step 10 then generates ATP and gives enolpyruvate, which undergoes tautomerization to pyruvate. The reaction is catalyzed by pyruvate kinase and requires that a molecule of fructose 1,6-bis-phosphate also be present, as well as 2 equivalents of Mg2+. One Mg2+ ion coordinates to ADP, and the other increases the acidity of a water molecule necessary for protonation of the enolate ion. [Pg.1150]

We have studied the extractant behavior of a series of compounds containing the carbamoylmethylphosphoryl (CMP) moiety in which the basicity of the phosphoryl group and the steric bulk of the substituent group are varied (10,LL). These studies have led to the development of extractants which have combinations of substituent groups that impart to the resultant molecule improved ability to extract Am(III) from nitric acid and to withstand hydrolytic degradation. At the same time good selectivity of actinides over most fission products and favorable solubility properties on actinide loading are maintained (11). [Pg.429]

Esters of a-diazoalkylphosphonic acids (95) show considerable thermal stability but react with acids, dienophiles, and triphenylphosphine to give the expected products. With olefinic compounds in the presence of copper they give cyclopropane derivatives (96), but with no such compounds present vinylphosphonic esters are formed by 1,2-hydrogen shift, or, when this route is not available, products such as (97) or (98) are formed, resulting from insertion of a carbenoid intermediate into C—C or C—H bonds. The related phosphonyl (and phosphoryl) azides (99) add to electron-rich alkynes to give 1,2,3-triazoles, from which the phosphoryl group is readily removed by hydrolysis. [Pg.116]

The kinetics of deuterium isotope exchange between diphenyl phosphine and t-butylthiol have been studied by H n.m.r. spectroscopy.274 A negative temperature coefficient was observed for the reaction of a perf1uoroalky1 phosphite with a fluorinated aldehyde.275 The kinetics for the reaction of alcohols with phosphoryl trichloride bore strong similarities to those of carboxylic acid derivatives.276 An interesting report desribed the solvolysis of ary 1 hydroxymethyl-phosphonates. It was shown that a phosphoryl group does not prevent carbocation formation on an immediately adjacent carbon atom.277... [Pg.416]

Application of the Horner-Wadsworth-Emmons reaction to the functionalization of dendrimers allows one to prepare amino acid terminated macromolecules. Such a reaction conducted with dendrimers 10-[G ], 10-[G 3], lO-fG ] and phosphonates unsubstituted at the carbon a to the phosphoryl group affords in moderate yield dendrimers bearing various a, / unsaturated functional groups on the surface [18]. (Schemes 17 and 18). [Pg.112]

Phosphates of pharmaceutical interest are often monoesters (Sect. 9.3), and the enzymes that are able to hydrolyze them include alkaline and acid phosphatases. Alkaline phosphatase (alkaline phosphomonoesterase, EC 3.1.3.1) is a nonspecific esterase of phosphoric monoesters with an optimal pH for catalysis of ca. 8 [140], In the presence of a phosphate acceptor such as 2-aminoethanol, the enzyme also catalyzes a transphosphorylation reaction involving transfer of the phosphoryl group to the alcohol. Alkaline phosphatase is bound extracellularly to membranes and is widely distributed, in particular in the pancreas, liver, bile, placenta, and osteoplasts. Its specific functions in mammals remain poorly understood, but it seems to play an important role in modulation by osteoplasts of bone mineralization. [Pg.56]

ATP -I- peptide <1> (<1> monophosphorylated [7] <1> containing sites phosphorylated in rhodopsin [9, 23] <1> less amount of phosphoryl group incorporation than of rhodopsin [9] <1> corresponding to the C-terminus and loop 5-6 of opsin, poor substrates, phosphorylates serine and threonine residues in each peptide [12] <1> acid-rich peptides, RK prefers acid residues localized to the C-terminal side of the serine [15, 23] <1> low catalytic efficiency of RK toward a peptide containing its major autophosphorylation site [27] <1> acidic peptides, stimulated by photo-lyzed rhodopsin, K-491 of RK participates in substrate binding [33]) (Reversibility <1> [7, 9, 12, 15, 22, 23, 27, 33, 36]) [7, 9, 12, 15, 22, 23, 27, 33, 36]... [Pg.74]

Phosphorylation of an enzyme can affect catalysis in another way by altering substrate-binding affinity. For example, when isocitrate dehydrogenase (an enzyme of the citric acid cycle Chapter 16) is phospho-rylated, electrostatic repulsion by the phosphoryl group inhibits the binding of citrate (a tricarboxylic acid) at the active site. [Pg.230]


See other pages where Phosphoryl group acids is mentioned: [Pg.246]    [Pg.466]    [Pg.509]    [Pg.630]    [Pg.94]    [Pg.338]    [Pg.175]    [Pg.9]    [Pg.78]    [Pg.286]    [Pg.287]    [Pg.406]    [Pg.415]    [Pg.74]    [Pg.77]    [Pg.83]    [Pg.85]    [Pg.302]    [Pg.328]    [Pg.123]    [Pg.223]    [Pg.90]    [Pg.273]    [Pg.89]    [Pg.329]    [Pg.684]    [Pg.330]    [Pg.390]    [Pg.653]    [Pg.91]    [Pg.141]    [Pg.353]    [Pg.451]    [Pg.103]    [Pg.1085]    [Pg.23]    [Pg.228]    [Pg.230]    [Pg.452]    [Pg.483]    [Pg.487]   
See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Phosphoryl group, transfer acid phosphatase

Phosphoryl groups

© 2024 chempedia.info