Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphines configuration

Although unsynunetrically substituted amines are chiral, the configuration is not stable because of rapid inversion at nitrogen. The activation energy for pyramidal inversion at phosphorus is much higher than at nitrogen, and many optically active phosphines have been prepared. The barrier to inversion is usually in the range of 30-3S kcal/mol so that enantiomerically pure phosphines are stable at room temperature but racemize by inversion at elevated tempeiatuies. Asymmetrically substituted tetracoordinate phosphorus compounds such as phosphonium salts and phosphine oxides are also chiral. Scheme 2.1 includes some examples of chiral phosphorus compounds. [Pg.79]

Examine both pyramidal and planar forms for each of the above molecules amine, phosphine and sulfoxide). Assume that the lower and higher-energy forms con-espond, respectively, to the preferred molecular structure and the transition state for configuration inversion. [Pg.71]

The cyclometallated palladium and platinum derivatives of trimesityl phosphine or arsine react with pyrazole or 3,5-dimethylpyrazole to form metal chelates 243 (E = P, As M = Pd, Pt R = H, Me) having the trans configuration (81TMC24). [Pg.217]

A similar situation occurs in trivalent phosphorus compounds, or phosphines. It turns out, though, that inversion at phosphorus is substantially slower than Inversion at nitrogen, so stable chiral phosphines can be isolated. (R)- and (5)-metbylpropylphenylphosphine, for example, are configurationally stable for several hours at 100 °C. We ll see the Importance of phosphine chirality in Section 26.7 in connection with the synthesis of chiral amino adds. [Pg.314]

Divalent sulfur compounds are achiral, but trivalent sulfur compounds called sulfonium stilts (R3S+) can be chiral. Like phosphines, sulfonium salts undergo relatively slow inversion, so chiral sulfonium salts are configurationally stable and can be isolated. The best known example is the coenzyme 5-adenosylmethionine, the so-called biological methyl donor, which is involved in many metabolic pathways as a source of CH3 groups. (The S" in the name S-adenosylmethionine stands for sulfur and means that the adeno-syl group is attached to the sulfur atom of methionine.) The molecule has S stereochemistry at sulfur ana is configurationally stable for several days at room temperature. Jts R enantiomer is also known but has no biological activity. [Pg.315]

It has 6-coordination with a chelating acetate [106] and may be converted (reversibly) into Ru(OAc)2(PPh3)3, which has the/ac-configuration with one monodentate and one bidentate acetate. It is fluxional at room temperature but at —70°C the phosphines are non-equivalent on the NMR timescale [107],... [Pg.38]

A number of tertiary phosphine ligands have been synthesized that also contain an alkene linkage capable of coordinating to a metal. A good example of this kind of coordination is formed in the complex of (tri-o-vinyl-phenyl)phosphine (Figure 2.29) with each alkene acting as a two-electron donor, a noble gas configuration is achieved [67],... [Pg.105]

The use of this phosphine facilitates assignment of configuration as virtual coupling is observed when the phosphines are trans (section 2.9.5).) Syntheses follow established routes using methyllithium as an alkylating agent the platinum(iV) complexes can be made by direct alkylation of platinum(IV) compounds or by oxidative addition to platinum(II) species. [Pg.264]

We discovered a complementary procedure for conversion of OMen to other functional groups. The ester P-OMen bond was shown to be cleaved in a stereoselective manner reductively [85,86]. The cleavage takes place with almost complete preservation of stereochemical integrity at phosphorus. The reducing agents are usually sodium or Hthium naphthalenide, lithium biphenyUde, and Hthium 4,4 -di-fert-butylbiphenyl (LDBB). The species produced is then quenched with an alkyl hahde or methanol to afford tertiary or secondary phosphines, respectively (Scheme 5b). Overall, the displacement reaction proceeds with retention of configuration. [Pg.13]

In a similar way to the aminolysis of the P-N bond mentioned above (Scheme 9), alcoholysis of phosphinous amides leads to the alkyl esters of the respective phosphinous acids [30, 121]. This reaction occurs with inversion of the absolute configuration of the phosphorus atom, and has been used in a synthetic sequence leading to optically active tertiary phosphanes 22 [122] (Scheme 23). [Pg.90]

The catalytic hydroformylation of alkenes has been extensively studied. The selective formation of linear versus branched aldehydes is of capital relevance, and this selectivity is influenced by many factors such as the configuration of the ligands in the metallic catalysts, i.e., its bite angle, flexibility, and electronic properties [152,153]. A series of phosphinous amide ligands have been developed for influencing the direction of approach of the substrate to the active catalyst and, therefore, on the selectivity of the reaction. The use of Rh(I) catalysts bearing the ligands in Scheme 34, that is the phosphinous amides 37 (R ... [Pg.95]

Chiral phosphinous amides have been found to act as catalysts in enantio-selective allylic alkylation. Horoi has reported that the palladium-catalyzed reaction of ( )-l,3-diphenyl-2-propenyl acetate with the sodium enolate of dimethyl malonate in the presence of [PdCl(7i-allyl)]2 and the chiral ligands 45 gave 46 in 51-94% yields and up to 97% ee (Scheme 38). It is notorious that when the reaction is carried out with the chiral phosphinous amide (S)-45a, the product is also of (S) configuration, whereas by using (R)-45b the enantiomeric (R) product is obtained [165]. [Pg.97]

C. By Oxidation.—This year s literature has been notable for attempts to study the details of certain phosphine oxidation reactions. In one such investigation nitric acid was found to oxidize phosphines, or phosphine sulphides, to phosphine oxides with inversion of configuration at phosphorus, whereas dinitrogen tetroxide, in the absence of acid, was found to oxidize the same compounds with predominant retention. The partial racemization observed with the latter reagent was probably due to the racemization of the oxides, since methylphenyl-n-propylphosphine oxide... [Pg.59]

Isopropyl (/ )-( —)-methylphosphinate (134) has been prepared" in > 90% optical purity by Raney nickel desulphurization of optically pure O-isopropyl (5)-(-f-)-methyIphosphonothioate (135). The phosphonate (134) is rapidly racemized by base, but not by acid, unlike secondary phosphine oxides"" [although whether these have been prepared optically active now seems doubtful (see Chapter 4)]. The phosphinate (134) can be reconverted into 89% optically pure (5)-( + )-(135) by addition of sulphur in dioxan. As shown in the Scheme, a series of interconversions has been used to establish the configurations. [Pg.92]

Optically active O-isopropyl (5)-( — )-methylphosphinothioate (136) has been prepared for the first time by reaction of isopropy (/ )-(- )-methyl-phosphinate (137) with P4S10. The retention of configuration at phosphorus during this conversion was established by the formation of the two enantiomers, (138) and (139), of O-isopropyl 5-phenyl methylphosphonodithioate by separate routes of known stereochemistry. [Pg.93]

C. Reactions of Phosphoric and Phosphinic Acid Derivatives.—The optically active phosphinate ester (90) has been shown to react with benzyl Grignard reagents or lithium anilide with inversion of configuration. Oxidation of... [Pg.115]


See other pages where Phosphines configuration is mentioned: [Pg.534]    [Pg.534]    [Pg.221]    [Pg.308]    [Pg.317]    [Pg.345]    [Pg.345]    [Pg.348]    [Pg.160]    [Pg.380]    [Pg.38]    [Pg.110]    [Pg.239]    [Pg.1058]    [Pg.1166]    [Pg.186]    [Pg.361]    [Pg.152]    [Pg.264]    [Pg.296]    [Pg.170]    [Pg.130]    [Pg.89]    [Pg.1235]    [Pg.10]    [Pg.11]    [Pg.14]    [Pg.23]    [Pg.28]    [Pg.36]    [Pg.95]    [Pg.286]    [Pg.332]    [Pg.345]    [Pg.286]    [Pg.8]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



© 2024 chempedia.info