Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphine ligands formation

The benzoic acid derivative 457 is formed by the carbonylation of iodoben-zene in aqueous DMF (1 1) without using a phosphine ligand at room temperature and 1 atm[311]. As optimum conditions for the technical synthesis of the anthranilic acid derivative 458, it has been found that A-acetyl protection, which has a chelating effect, is important[312]. Phase-transfer catalysis is combined with the Pd-catalyzed carbonylation of halides[3l3]. Carbonylation of 1,1-dibromoalkenes in the presence of a phase-transfer catalyst gives the gem-inal dicarboxylic acid 459. Use of a polar solvent is important[314]. Interestingly, addition of trimethylsilyl chloride (2 equiv.) increased yield of the lactone 460 remarkabiy[3l5]. Formate esters as a CO source and NaOR are used for the carbonylation of aryl iodides under a nitrogen atmosphere without using CO[316]. Chlorobenzene coordinated by Cr(CO)j is carbonylated with ethyl formate[3l7]. [Pg.190]

Figure 3.54 The effect of the bulk of tertiary phosphine ligands upon the ease of the formation of... Figure 3.54 The effect of the bulk of tertiary phosphine ligands upon the ease of the formation of...
Cements, polyester, 30 CFCs. See Chlorofluorocarbons (CFCs) Chain conformation, 54 Chain extenders, 213-214 structure of, 219 Chain extension, 216 Chain-growth polymerizations, 4 Char formation, 421, 423 Chelated phosphine ligands, 488 Chemical recycling, 208 Chemical structure... [Pg.579]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

The group of Protasiewicz, who has reported Cp2Zr complexed phosphinidenes with very bulky substituents and phosphine ligands, has explored the interchange of ligands and the formation of diphosphenes [113]. [Pg.114]

It should be noted that the Grob fragmentation reaction and the reductive cyclization (homoallylation) discussed in this section involve the same oxanickellacyclopentane 66 as a common intermediate (Scheme 17). The reversibility of these C - C bond cleavage reaction and C - C bond formation reaction is also supported by the isolation and characterization (by X-ray analysis) of an oxanickellacyclopentane-like 66 (without a tether), which is prepared from a stoichiometric amount of Ni(cod)2, a diene, an aldehyde, and a monodentate phosphine ligand [41]. [Pg.209]

The X-ray structure of (347), PR3 = PMe3, confirms the trigonal-bipyramidal structure, with the olefin and phosphine ligands lying in the equatorial plane. The equilibrium between free and bound olefin depends on the size of the tertiary phosphine. Further reaction of (347) with IrCl(CO)(PMe3)2 results in formation of a bimetallic iridacyclobutene complex by a second-order process. [Pg.211]

The coordination chemistry of tertiary phosphine-functionalized calix[4]arenes have been described.279 Treatment of a bis(diphenylphosphino) or bis(dimethylphosphino) derivative of calix[4]arene with [PtCl2(COD)] leads to the formation of the corresponding dichloroplatinum(II) complex. The related diplatinum(II) species has also been reported with the tetrafunctionalized calix[4]arene.280 The mononuclear derivative is susceptible to oligomerization if the two free phosphine ligands are not oxidized or complexed to another metal center such as gold(I).279 The platinum(II) coordination chemistry of a mono-281 and diphosphite282 derived calix[ ]arene (n = 4 and 6, respectively) has also been described. [Pg.707]

Zinc telluride and zinc selenide polymetallic species with phosphine ligands have been structurally characterized 301 further details are discussed in Section 6.8.7. The use of mono- and bidentate phosphine ligands of varying steric bulk contributes to the variation of structural types in the formation of zinc tellurolate polyzinc species with Zn10, Zn14, and Zn16 species structurally characterized by Fenske et al.30... [Pg.1170]

Nickel and palladium complexes also catalyze the formation of the carbon-phosphorus bonds in phosphorus(V) and phosphorus(III) compounds. Indeed, this chemistry has become a common way to prepare phosphine ligands by the catalytic formation of phosphine oxides and subsequent reduction, by the formation of phosphine boranes and subsequent decomplexation, or by the formation of phosphines directly. The catalytic formation of both aryl and vinyl carbon phosphorus bonds has been accomplished. [Pg.386]


See other pages where Phosphine ligands formation is mentioned: [Pg.363]    [Pg.494]    [Pg.157]    [Pg.211]    [Pg.151]    [Pg.190]    [Pg.562]    [Pg.25]    [Pg.244]    [Pg.24]    [Pg.112]    [Pg.115]    [Pg.194]    [Pg.95]    [Pg.265]    [Pg.142]    [Pg.198]    [Pg.9]    [Pg.362]    [Pg.716]    [Pg.756]    [Pg.76]    [Pg.117]    [Pg.243]    [Pg.190]    [Pg.274]    [Pg.581]    [Pg.606]    [Pg.706]    [Pg.711]    [Pg.934]    [Pg.1053]    [Pg.72]    [Pg.173]    [Pg.91]    [Pg.128]    [Pg.152]    [Pg.191]    [Pg.307]    [Pg.355]    [Pg.153]   
See also in sourсe #XX -- [ Pg.1087 , Pg.1091 ]




SEARCH



Formate ligand

Phosphine formation

Phosphine ligand

Phosphinic formation

© 2024 chempedia.info