Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phase transition, ferroelectric crystals

Figure 45. The configurational entropies of the ferroelectric phase transition for crystals 1 (A) and 2 (+). The difference in entropy between the two crystals, AS, is 0.79 x 10-3Jg-1 this is assigned to the Cu+ dopants. The DSC measurements were made with the cooling and heating rates 5 K/min in an interval ranging from 373 K to 220 K using a DSC 2920 calorimeter (TA Instruments) [179]. (Reproduced with permission from Ref. 179. Copyright 2004, The American Physical Society.)... Figure 45. The configurational entropies of the ferroelectric phase transition for crystals 1 (A) and 2 (+). The difference in entropy between the two crystals, AS, is 0.79 x 10-3Jg-1 this is assigned to the Cu+ dopants. The DSC measurements were made with the cooling and heating rates 5 K/min in an interval ranging from 373 K to 220 K using a DSC 2920 calorimeter (TA Instruments) [179]. (Reproduced with permission from Ref. 179. Copyright 2004, The American Physical Society.)...
Sedarous. S. Subramony, J.A. Kahr. B. Stmcture and optical characterization of Rochelle salt dye inclusion crystals and the fluorescence detection of their phase transitions. Ferroelectrics 1997, 191. 302-306. [Pg.504]

The entropy value of gaseous HCl is a sum of contributions from the various transitions summarized in Table 4. Independent calculations based on the spectroscopic data of H Cl and H Cl separately, show the entropy of HCl at 298 K to be 186.686 and 187.372 J/(mol K) (44.619 and 44.783 cal/(mol K), respectively. The low temperature (rhombic) phase is ferroelectric (6). SoHd hydrogen chloride consists of hydrogen-bonded molecular crystals consisting of zigzag chains having an angle of 93.5° (6). Proton nmr studies at low temperatures have also shown the existence of a dimer (HC1)2 (7). [Pg.439]

Crystals with one of the ten polar point-group symmetries (Ci, C2, Cs, C2V, C4, C4V, C3, C3v, C(, Cgv) are called polar crystals. They display spontaneous polarization and form a family of ferroelectric materials. The main properties of ferroelectric materials include relatively high dielectric permittivity, ferroelectric-paraelectric phase transition that occurs at a certain temperature called the Curie temperature, piezoelectric effect, pyroelectric effect, nonlinear optic property - the ability to multiply frequencies, ferroelectric hysteresis loop, and electrostrictive, electro-optic and other properties [16, 388],... [Pg.217]

Ferroelasticity is the mechanical analogon to ferroelectricity. A crystal is ferroelastic if it exhibits two (or more) differently oriented states in the absence of mechanical strain, and if one of these states can be shifted to the other one by mechanical strain. CaCl2 offers an example (Fig. 4.1, p. 33). During the phase transition from the rutile type to the CaCl2 type, the octahedra can be rotated in one or the other direction. If either rotation takes place in different regions of the crystal, the crystal will consist of domains having the one or the other orientation. By exerting pressure all domains can be forced to adopt only one orientation. [Pg.231]

A less well-documented effect is that of the phase-transition temperature of certain crystals which are very sensitive to deuteration. Some crystals of ferroelectric and antiferroelectric materials, and in particular dihydrogen phosphates and hydrogen selenites, which are extensively hydrogen bonded, display this effect (Blinc and Zeks, 1974). For some crystals, such as caesium... [Pg.294]

The concept of quantum ferroelectricity was first proposed by Schneider and coworkers [1,2] and Opperman and Thomas [3]. Shortly thereafter, quantum paraelectricity was confirmed by researchers in Switzerland [4], The real part of the dielectric susceptibihty of KTO and STO, which are known as incipient ferroelectric compounds, increases when temperature decreases and becomes saturated at low temperature. Both of these materials are known to have ferroelectric soft modes. However, the ferroelectric phase transition is impeded due to the lattice s zero point vibration. These materials are therefore called quantum paraelectrics, or quantum ferroelectrics if quantum paraelectrics are turned into ferroelectrics by an external field or elemental substitution. It is well known that commercially available single crystal contains many defects, which can include a dipolar center in the crystal. These dipolar entities can play a certain role in STO. The polar nanoregion (PNR originally called the polar microregion) may originate from the coupling of the dipolar entities with the lattice [5-7]. When STO is uniaxially pressed, it turns into ferroelectrics [7]. [Pg.90]

According to the concept of the displacive-type ferroelectric phase transition [10], an increase in the dielectric constant corresponds directly to the softening of the IR-active transverse phonon. When the crystal can be regarded as an assembly of the vibrators of normal coordinates, the soft phonon... [Pg.90]

Static dielectric measurements [8] show that all crystals in the family exhibit a very large quantum effect of isotope replacement H D on the critical temperature. This effect can be exemphfied by the fact that Tc = 122 K in KDP and Tc = 229 K in KD2PO4 or DKDP. KDP exhibits a weak first-order phase transition, whereas the first-order character of phase transition in DKDP is more pronounced. The effect of isotope replacement is also observed for the saturated (near T = 0 K) spontaneous polarization, Pg, which has the value Ps = 5.0 xC cm in KDP and Ps = 6.2 xC cm in DKDP. As can be expected for a ferroelectric phase transition, a decrease in the temperature toward Tc in the PE phase causes a critical increase in longitudinal dielectric constant (along the c-axis) in KDP and DKDP. This increase follows the Curie-Weiss law. Sc = C/(T - Ti), and an isotope effect is observed not only for the Curie-Weiss temperature, Ti Tc, but also for the Curie constant C (C = 3000 K in KDP and C = 4000 K in DKDP). Isotope effects on the quantities Tc, P, and C were successfully explained within the proton-tunneling model as a consequence of different tunneling frequencies of H and D atoms. However, this model can hardly reproduce the Curie-Weiss law for Sc-... [Pg.152]

Ferroelectricity has also been found in certain copolymer compositions of VF2 with trifluoroethylene, F3E, [6-11] and tetrafluoroethylene, F4E, [12-15] and in nylon 11 [16]. Specifically, copolymers of vinylidene fluoride and trifluoroethylene (VF2/F3E) are materials of great interest because of their outstanding ferroelectricity [9,17-18], together with a parallel strong piezo- [7] and pyroelectricity [19]. These copolymers exhibit, in addition, an important aspect of ferroelectricity that so far has not been demonstrated in PVF2 the existence of a Curie temperature at which the crystals undergo reversibly a ferroelectric to a paraelectric phase transition in a wide range of compositions [9, 17-18],... [Pg.3]

Yamada et al. [9,10] demonstrated that the copolymers were ferroelectric over a wide range of molar composition and that, at room temperature, they could be poled with an electric field much more readily than the PVF2 homopolymer. The main points highlighting the ferroelectric character of these materials can be summarized as follows (a) At a certain temperature, that depends on the copolymer composition, they present a solid-solid crystal phase transition. The crystalline lattice spacings change steeply near the transition point, (b) The relationship between the electric susceptibility e and temperature fits well the Curie-Weiss equation, (c) The remanent polarization of the poled samples reduces to zero at the transition temperature (Curie temperature, Tc). (d) The volume fraction of ferroelectric crystals is directly proportional to the remanent polarization, (e) The critical behavior for the dielectric relaxation is observed at Tc. [Pg.13]


See other pages where Phase transition, ferroelectric crystals is mentioned: [Pg.44]    [Pg.281]    [Pg.199]    [Pg.4]    [Pg.167]    [Pg.2543]    [Pg.203]    [Pg.66]    [Pg.16]    [Pg.392]    [Pg.668]    [Pg.219]    [Pg.204]    [Pg.3]    [Pg.49]    [Pg.89]    [Pg.115]    [Pg.149]    [Pg.150]    [Pg.150]    [Pg.152]    [Pg.153]    [Pg.154]    [Pg.155]    [Pg.157]    [Pg.160]    [Pg.161]    [Pg.163]    [Pg.125]    [Pg.78]    [Pg.173]    [Pg.203]    [Pg.1086]    [Pg.30]    [Pg.30]    [Pg.45]   
See also in sourсe #XX -- [ Pg.44 , Pg.48 ]

See also in sourсe #XX -- [ Pg.44 , Pg.48 ]




SEARCH



Crystal phases

Ferroelectric crystals

Ferroelectric phase

Ferroelectricity crystals

Ferroelectrics phase transition

Transition ferroelectric phase

Transitions crystallization

© 2024 chempedia.info