Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perylene metallic

L. Alcacer and A. H. Maki, Magnetic properties of some electrically conducting perylene-metal dithiolate complexes, J. Phvs. Chem. 20 158 (1978). [Pg.209]

Tri-(l-naphthyl)phosphine is cleaved by alkali metals in THF solution. " Reaction with sodium gives the naphthalene radical-ion, with lithium the perylene radical-ion, and with potassium the radical-ion (22). Hydrocarbon radical-ion formation was thought to occur via naphthalene derived from the metal naphthalenide. E.s.r. spectra of further examples of phosphorus-substituted picrylhydrazyl radicals have been reported. ... [Pg.235]

Rosseinsky, D. R. et al., J. Chem. Soc., Perkin Trans. 2, 1985, 135-138 The title compound, prepared by electrolysis of perylene and tetrabutylammo-nium perchlorate in nitrobenzene, exploded on contact with nickel. Co-produced compounds should also be handled with caution and in small amounts, especially in contact with metals. [Pg.1260]

Other selected examples include tris(tetramethylethylene diamine-sodium)-9,9-dianthryl 143,154 alkali metal salts of 9,10-bis(diisopropylsilyl)anthracene 144,155 as well as the closely related naked 9,10-bis(trimethylsilyl)anthra-cene radical anion 145.156 This chemistry is further extended to the solvent-shared and solvent-separated alkali metal salts of perylene radical anions and dianions 146, 147,156 while other examples focus on alkali metal salts of 1,2-diphenylbenzene and tetraphenylethylene derivatives, where reduction with potassium in diglyme afforded contact molecules with extensive 7r-bonding, [l,2-Ph2C6H4K(diglyme)] 148.157 Extensive 7r-coordination is also observed in (1,1,4,4 tetraphenylbutadiene-2,3-diyl)tetracesiumbis(diglyme)bis(methoxyethanolate) 149.158... [Pg.17]

It has been reported that the electrical properties of single molecules incorporating redox groups (e.g. viologens [114, 119, 120, 123, 124], oligophenylene ethynylenes [122, 123], porphyrins [111, 126], oligo-anilines and thiophenes [116, 127], metal transition complexes [118,128-132], carotenes [133], ferrocenes [134,135],perylene tetracarboxylic bisimide [93, 136, 137] and redox-active proteins [138-143]), can be switched electrochemically. Such experiments, typically performed by STM on redox-active molecules tethered via Au-S bonds between a gold substrate and a tip under potential control, allow the possibility to examine directly the correlation between redox state and the conductance of individual molecules. [Pg.96]

Redox molecules are particularly interesting for an electrochemical approach, because they offer addressable (functional) energy states in an electrochemically accessible potential window, which can be tuned upon polarization between oxidized and reduced states. The difference in the junction conductance of the oxidized and the reduced forms of redox molecules may span several orders of magnitude. Examples of functional molecules used in these studies include porphyrins [31,153], viologens [33, 34,110,114,154,155], aniline and thiophene oligomers [113, 146, 156, 157], metal-organic terpyridine complexes [46, 158-163], carotenes [164], nitro derivatives of OPE (OPV) [165, 166], ferrocene [150, 167, 168], perylene tetracarboxylic bisimide [141, 169, 170], tetrathia-fulvalenes [155], fullerene derivatives [171], redox-active proteins [109, 172-174], and hydroxyquinones [175]. [Pg.133]

Many large band-gap organic materials have been explored for blue emission. To summarize, they are the distyrylarylene series, anthracenes, perylenes, fluorenes, heterocyclic compounds, and metal complexes. [Pg.350]

P.R.206 is a mixed crystal type and consists of unsubstituted quinacridone and quinacridone quinone. The ratio between the two components as well as the crystal modification is not yet known. P.R.206 affords a very dull, yellowish shade of red, referred to as maroon. The pigment is considerably weaker than perylene pigments. All commercially available types of P.R.206 are more or less transparent and are used mostly in metallic finishes for automobiles, to which they lend reddish shades of copper. The pigment is often found to be difficult to disperse. The finishes frequently exhibit rheological problems, especially at high pigment concentration. [Pg.470]

P.V.29 types demonstrate excellent weatherfastness, much more so than other perylene pigments. Their impact on the market, however, is limited by their very dull shade of maroon. Full shades are deep brown, almost black. The pigment is very fast to organic solvents and overcoating. Commercial types are utilized especially in metallic finishes. Full shades frequently bronze upon exposure to weather. [Pg.482]

Since the same dye molecules can serve as both donors and acceptors and the transfer efficiency depends on the spectral overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor, this efficiency also depends on the Stokes shift [53]. Involvement of these effects depends strongly on the properties of the dye. Fluoresceins and rhodamines exhibit high homo-FRET efficiency and self-quenching pyrene and perylene derivatives, high homo-FRET but little self-quenching and luminescent metal complexes may not exhibit homo-FRET at all because of their very strong Stokes shifts. [Pg.118]

Direct metal deposition from metallic sources has been extensively used for model catalyst deposition for high-throughput and combinatorial studies. However, these methods are also increasingly used to deposit practical electrocatalyst materials. The best known approach is the one developed by 3M researchers have used physical vapor deposition to deposit Pt and Ft alloys onto nanostructured (NS) films composed of perylene red whiskers. The approach has been recently been reviewed by Debe. ... [Pg.12]


See other pages where Perylene metallic is mentioned: [Pg.3600]    [Pg.154]    [Pg.3600]    [Pg.154]    [Pg.250]    [Pg.245]    [Pg.288]    [Pg.550]    [Pg.617]    [Pg.811]    [Pg.30]    [Pg.78]    [Pg.101]    [Pg.121]    [Pg.241]    [Pg.155]    [Pg.1353]    [Pg.640]    [Pg.476]    [Pg.481]    [Pg.198]    [Pg.26]    [Pg.151]    [Pg.31]    [Pg.32]    [Pg.130]    [Pg.218]    [Pg.69]    [Pg.175]    [Pg.935]    [Pg.1353]    [Pg.280]    [Pg.132]    [Pg.96]    [Pg.245]    [Pg.155]   
See also in sourсe #XX -- [ Pg.15 , Pg.212 ]




SEARCH



Perylen

Perylene metal-to-insulator transition

Perylene, metal-enhanced fluorescence

Perylenes

© 2024 chempedia.info