Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Perylene, chemiluminescence

Persulfonic acid, 1002-4 Perylene, chemiluminescence, 648 PFA see Peroxyformic acid PfATP6 enzyme, 1313, 1320 PGG2, prostaglandin endoperoxide, 190, 191, 214, 215... [Pg.1482]

Decomposition of diphenoylperoxide [6109-04-2] (40) in the presence of a fluorescer such as perylene in methylene chloride at 24°C produces chemiluminescence matching the fluorescence spectmm of the fluorescer with perylene was reported to be 10 5% (135). The reaction follows pseudo-first-order kinetics with the observed rate constant increasing with fluorescer concentration according to = k [flr]. Thus the fluorescer acts as a catalyst for peroxide decomposition, with catalytic decomposition competing with spontaneous thermal decomposition. An electron-transfer mechanism has been proposed (135). [Pg.269]

Hydrogen peroxide has also been analy2ed by its chemiluminescent reaction with bis(2,4,6-trichlorophenyl) oxalate and perylene in a buffered (pH 4—10) aqueous ethyl acetate—methanol solution (284). Using a flow system, intensity was linear from the detection limit of 7 x 10 M to at least 10 M. [Pg.275]

FIGURE 15.28 Chemiluminescence, the emission of light as the result of a chemical reaction, occurs when hydrogen peroxide is added to a solution of the organic compound perylene. Although hydrogen peroxide itself can fluoresce, in this case the light is emitted by the perylene. [Pg.767]

Similar results were obtained with the diperoxides 5 (R phenyl) and 5 a (R />-chlorophenyl) and dibenzanthrone or other fluorescers (perylene, rhodamine B, 9.10-diphenylanthracene, anthracene, fluorescein), with quantum yields of the respective chemiluminescence in the range 3.29 X 10 8.... 5.26 X 10 6. [Pg.82]

Chemiluminescence also occurs during electrolysis of mixtures of DPACI2 99 and rubrene or perylene In the case of rubrene the chemiluminescence matches the fluorescence of the latter at the reduction potential of rubrene radical anion formation ( — 1.4 V) at —1.9 V, the reduction potential of DPA radical anion, a mixed emission is observed consisting of rubrene and DPA fluorescence. Similar results were obtained with the dibromide 100 and DPA and/or rubrene. An energy-transfer mechanism from excited DPA to rubrene could not be detected under the reaction conditions (see also 154>). There seems to be no explanation yet as to why, in mixtures of halides like DPACI2 and aromatic hydrocarbons, electrogenerated chemiluminescence always stems from that hydrocarbon which is most easily reduced. A great number of aryl and alkyl halides is reported to exhibit this type of rather efficient chemiluminescence 155>. [Pg.122]

A wide variety of different classes of fluorescent molecules has been investigated in the peroxyoxalate chemiluminescent systems. Among those screened were fluorescent dyes such as rhodamines and fluoresceins, heterocyclic compounds such as benzoxazoles and benzothiazoles, and a number of polycyclic aromatic hydrocarbons such as anthracenes, tetracenes, and perylenes. The polycyclic aromatic hydrocarbons and some of their amino derivatives appear to be the best acceptors as they combine high fluorescence efficiency with high excitation efficiency in the chemiluminescent reaction [28],... [Pg.112]

The main features of the chemiluminescence mechanism are exemplarily illustrated in Scheme 11 for the reaction of bis(2,4,6-trichlorophenyl)oxalate (TCPO) with hydrogen peroxide in the presence of imidazole (IMI-H) as base catalyst and the chemiluminescent activators (ACT) anthracene, 9,10-diphenylanthracene, 2,5-diphenyloxazole, perylene and rubrene. In this mechanism, the replacement of the phenolic substituents in TCPO by IMI-H constitutes the slow step, whereas the nucleophilic attack of hydrogen peroxide on the intermediary l,l -oxalyl diimidazole (ODI) is fast. This rate difference is manifested by a two-exponential behavior of the chemiluminescence kinetics. The observed dependence of the chemiexcitation yield on the electrochemical characteristics of the activator has been rationalized in terms of the intermolecular CIEEL mechanism (Scheme 12), in which the free-energy balance for the electron back-transfer (BET) determines whether the singlet-excited activator, the species responsible for the light emission, is formed ... [Pg.1189]

Lee and coworkers postulated the involvement of 50 and 51 (Ar = 2,4-dinitrophenyl) as two HEIs formed in parallel in the uncatalyzed reaction of DNPO and hydrogen peroxide in the presence of perylene. Due to the experimental observations of light emission from the reaction of DNPO and TCPO also in the absence of hydrogen peroxide, Lee and coworkers postulated the involvement of a nonperoxidic HEI (additionally to 51 and 3, 48 or 52) under these conditions. However, neither chemiluminescence quantum yields nor even relative emission intensities have been reported. Furthermore, it was shown " that the intensities and the chemiluminescence quantum yields in the absence of hydrogen peroxide are five orders of magnitude lower than in the presence of 10 M H2O2, indicating that the proposed additional pathway is of extremely low efficiency for excited-state... [Pg.1262]

Stevani and coworkers prepared and characterized a peracid intermediate, 4-chloro-pheny 1-0,0-hydrogen monoperoxalate (57) and found that no chemiluminescence was observed in the presence of activators (i.e. rubrene, perylene and DPA) and the absence of a base. Based on this result, the authors excluded 57 and similar peracid derivatives as HEI in the peroxyoxalate system. Moreover, 57 only emits light in the presence of an activator and a base with pK > 6, suggesting that a slow chemical transformation must still occur prior to the chemiexcitation step. Kinetic experiments with 57, using mainly imidazole, but also in the presence of other bases such as potassium 4-chlorophenolate, f-butoxide and l,8-bis(dimethylamino)naphthalene , showed that imidazole can act competitively as base and nucleophilic catalyst (Scheme 41). At low imidazole concentrations, base catalysis is the main pathway (steps 1 and 2) however, increasing the base concentration causes nucleophilic attack of imidazole catalyzed by imidazole to become the main pathway (steps la and 2a). Contrary to the proposal of Hohman and coworkers , the... [Pg.1263]

The peroxyoxalate system is the only intermolecular chemiluminescent reaction presumably involving the (71EEL sequence (Scheme 44), which shows high singlet excitation yields (4>s), as confirmed independently by several authors Moreover, Stevani and coworkers reported a correlation between the singlet quantum yields, extrapolated to infinite activator concentrations (4> ), and the free energy involved in back electron-transfer (AG bet), as well as between the catalytic electron-transfer/deactivation rate constants ratio, ln( cAx( i3), and E j2° (see Section V). A linear correlation of ln( cAx( i3) and E /2° was obtained for the peroxyoxalate reaction with TCPO and H2O2 catalyzed by imidazole and for the imidazole-catalyzed reaction of 57, both in the presence of five activators commonly used in CIEEL studies (anthracene, DPA, PPO, perylene and rubrene). A further confirmation of the validity of the CIEEL mechanism in the excitation step of... [Pg.1267]

Peroxyoxalate chemiluminescence reactions are analytically important (particularly in HPLC). The most commonly used reagents are bis-(2,4,6-trichlorophenyl)oxalate (TCPO) and bis-(2.4-din-itrophenyl)oxalate (DNPO). Fluorescent compounds (including anthracene, perylene, aminoanthracenes, and aminopyrenes) and suitably derivatized analytes (such as amines, steroids with dansyl chloride thiols with N-[4-(6-dimethylamino-2-benzofuranyl)-phe-nyljmaleimide and catecholamines with fluoresca-mine) can be sensitively detected. [Pg.539]

Strong chemiluminescence was observed only in dimethylphthalate as solvent. Small quantities of water enhanced the light yield but oxygen had no distinct influence on the chemiluminescence [24 a]. Phthaloyl peroxide exhibits chemiluminescence with a series of other fluorescent compounds such as BPEA, pyrene, perylene, 1,3-diphenyl isobenzofuran, and fluorescein. [Pg.43]

A much stronger chemiluminescence is observed when fluorescent compounds such as perylene, DPA or 7-(dimethylamino)-2-methylphenazine are present. As the chemiluminescence intensity varies linearly with the one-electron oxidation potential of the activator, the CIEEL mechanism (see p. 34) is suggested as operating in this case [71]. [Pg.98]

In polar solvents, however, there is no exciplex emission. The free radical ions are formed, and they can produce chemiluminescence by annihilation. The recombination reaction between perylene radical anion (14) and tetramethyl-p-phenylene diamine radical cation ( Wurster s Blue ) in 1,2-dimethoxyethan (= DME) was the first bright chemiluminescence of this type [34]. [Pg.141]


See other pages where Perylene, chemiluminescence is mentioned: [Pg.269]    [Pg.274]    [Pg.160]    [Pg.173]    [Pg.1214]    [Pg.1268]    [Pg.1214]    [Pg.1262]    [Pg.1263]    [Pg.1267]    [Pg.1268]    [Pg.415]    [Pg.228]    [Pg.254]    [Pg.200]    [Pg.310]   
See also in sourсe #XX -- [ Pg.648 ]




SEARCH



Perylen

Perylenes

© 2024 chempedia.info