Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peroxidase catalysis, steps involved

The first step of peroxidase catalysis involves binding of the peroxide, usually H2C>2, to the heme iron atom to produce a ferric hydroperoxide intermediate [Fe(IE)-OOH]. Kinetic data identify an intermediate prior to Compound I whose formation can be saturated at higher peroxide concentrations. This elusive intermediate, labeled Compound 0, was first observed by Back and Van Wart in the reaction of HRP with H2O2 [14]. They reported that it had absorption maxima at 330 and 410 nm and assigned these spectral properties to the ferric hydroperoxide species [Fe(III)-OOH]. They subsequently detected transient intermediates with similar spectra in the reactions of HRP with alkyl and acyl peroxides [15]. However, other studies questioned whether the species with a split Soret absorption detected by Back and Van Wart was actually the ferric hydroperoxide [16-18], Computational prediction of the spectrum expected for Compound 0 supported the structure proposed by Baek and Van Wart for their intermediate, whereas intermediates observed by others with a conventional, unsplit Soret band may be complexes of ferric HRP with undeprotonated H2O2, that is [Fe(III)-HOOH] [19]. Furthermore, computational analysis of the peroxidase catalytic sequence suggests that the formation of Compound 0 is preceded by formation of an intermediate in which the undeprotonated peroxide is coordinated to the heme iron [20], Indeed, formation of the [Fe(III)-HOOH] complex may be required to make the peroxide sufficiently acidic to be deprotonated by the distal histidine residue in the peroxidase active site [21],... [Pg.83]

Enzymatic transformations of alkaloids by peroxidases most probably occur by single-step oxidations catalyzed by the HRP-I and HRP-II forms of the enzyme. The catalysis of one-electron oxidations of compounds containing aromatic hydrocarbon, hydrazine, phenol, hydroxamic acid, and amine functional groups has been recently reviewed (45, 58, 82). A brief summary of those HRP reactions that involve functional groups most commonly occurring in alkaloids is presented below. [Pg.347]

To clarify the mechanism of reaction of P-450, it is crucial to characterize the reactive intermediates in the rate-determining step. Definitive evidence for an electron-transfer mechanism (C in Scheme 2) for the 7V-demethylation of N,N-dimethylanilines has been obtained by direct observation of the reduction of the high-valent species responsible for P-450 catalysis [96]. For peroxidase, an oxoferryl porphyrin 7r-radical cation, compound I ([(P)Fe =0] "), has been well characterized as the species equivalent to the proposed active intermediate of P-450 [97-103]. Compound I of horseradish peroxidase (HRP) can be readily generated by chemical oxidation of HRP [100-103]. The involvement of the electron-transfer process of compound I in the oxidation of several amines catalyzed by HRP was... [Pg.1597]


See other pages where Peroxidase catalysis, steps involved is mentioned: [Pg.4]    [Pg.148]    [Pg.82]    [Pg.62]    [Pg.148]    [Pg.315]   
See also in sourсe #XX -- [ Pg.82 ]




SEARCH



Steps involved

© 2024 chempedia.info