Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Periodic orbit symmetric stretch

At energies slightly above the saddle energy, there exists a single unstable classical periodic orbit. This periodic orbit corresponds in general to symmetric stretching motion (or an equivalent mode in XYZ-type molecules). The Lyapunov exponent of this periodic orbit tends to the one of the equilibrium point as the threshold energy is reached from above. [Pg.543]

The theory of bifurcations shows that the different types of bifurcations can be described in terms of normal forms, which represent local expansions of the dynamics around the bifurcating periodic orbit [19, 32, 49]. The purpose of the above mapping is to describe the successive bifurcations of the symmetric-stretch periodic orbit, starting from low energies above the saddle point. Appropriate truncation of the Taylor series of the potential v(q) around <7 = 0, which corresponds to the location of the symmetric-stretch orbit, provides us with the normal forms of the bifurcations [144], The bifurcations relevant for the dissociation dynamics under discussion can be described by truncating at the sixth order in q,... [Pg.546]

As the energy increases in the interval E < E < Ea, the orbits Y and 2 progressively shift toward the symmetric-stretch orbit 0 and merge at the subcritical antipitchfork bifurcation. Just below this bifurcation, 1 and 2 are elliptic while 0 is still hyperbolic (without reflection). Between and Ea, the periodic orbits 1 and 2 may either remain of elliptic type or become hyperbolic in the energy interval [ , "1 such that E < Edd> < Edd < Ea. [Pg.549]

In the presence of reflection symmetry with respect to the diagonal of the potential-energy surface, as in symmetric molecules or in the four-disk scatterer, Burghardt and Gaspard have shown that a further symmetry reduction can be performed in which the symbolic dynamics still contains three symbols A = 0, +, - [10]. The orbit 0 is the symmetric-stretch periodic orbit as before. The orbit + is one of the off-diagonal orbits 1 or 2 while - represents a half-period of the asymmetric-stretch orbit 12. Note that the latter has also been denoted the hyperspherical periodic orbit in the literature. [Pg.554]

The derivation of (4.13) shows that the equilibrium point quantization and the periodic-orbit quantization can be compared term by term. This comparison shows that the periodic-orbit quantization is able to take into account the anharmonicities in the direction of symmetric stretch. However, the anhar-monicities are neglected in the other directions transverse to the periodic orbit. Their full treatment requires the calculation of h corrections to the Gutzwiller trace formula, as shown elsewhere [14]. [Pg.556]

Figure 15. Three-branch Smale horseshoe in the 2F collinear model of Hgl2 dissociation at the energy E = 600 cm 1 above the saddle in a planar Poincare surface of section transverse to the symmetric-stretch periodic orbit. The Smale horseshoe is here traced out in a density plot of the cumulated escape-time function (4.6). Figure 15. Three-branch Smale horseshoe in the 2F collinear model of Hgl2 dissociation at the energy E = 600 cm 1 above the saddle in a planar Poincare surface of section transverse to the symmetric-stretch periodic orbit. The Smale horseshoe is here traced out in a density plot of the cumulated escape-time function (4.6).
The eigenfunctions associated with the resonances have been obtained via wavepacket propagation. They appear to be localized along the symmetric-stretch periodic orbit 0, with a number of nodes equal to n and even under the exchange of iodine nuclei. Due to the relative stability of the symmetric-stretch orbit, we have thus here a system where the hypothesis of the orbit 12 representing the RPO, that is, resonant periodic orbit, does not hold. [Pg.565]

Figure 16. Scattering resonances of the full rotational-vibrational Hamiltonian describing the dissociation of CO2 on a LEPS surface obtained by equilibrium point quantization with (2.8). The resonances with 7 = 0,..., 10 are given by dots. Their close vicinity explains the formation of hyphens , i.e., unresolved sequences of dots. Note that rotation is very slightly destabilizing in the present model. The successive hyphens are the bending progressions with V2 = 0,. .. 5. The solid line is given by the Lyapunov exponent of the symmetric-stretch periodic orbit 0 expressed as an imaginary energy. Figure 16. Scattering resonances of the full rotational-vibrational Hamiltonian describing the dissociation of CO2 on a LEPS surface obtained by equilibrium point quantization with (2.8). The resonances with 7 = 0,..., 10 are given by dots. Their close vicinity explains the formation of hyphens , i.e., unresolved sequences of dots. Note that rotation is very slightly destabilizing in the present model. The successive hyphens are the bending progressions with V2 = 0,. .. 5. The solid line is given by the Lyapunov exponent of the symmetric-stretch periodic orbit 0 expressed as an imaginary energy.
In a more recent work, Joens [158] has assigned the structures of the Hartley band using a Dunham expansion, that is equilibrium point quantization. The lifetime predicted by his analysis is extremely short, equal to 3.2 fs, while the symmetric stretching period is of 30 fs. Recall, however, that the interpretations in terms of equilibrium point expansions and in terms of periodic orbits are strictly complementary only for regular regimes. [Pg.572]

To answer Prof. Marcus s question, we may therefore conclude that the natural motions of the system are the short-time periodic orbits. Those that arise from the symmetric-stretch bifurcations depend on the frequency ratio local modes in the 1 1 case, 7-shaped orbits at the 3 2 instability, horseshoes at the 2 1 resonances, and so on. [Pg.598]

The period of the anti-symmetric stretch periodic trajectory does not correspond, however, to any of the three recurrences we see in Figure 8.4. This is not at all surprising in order to come back to the FC region, which in this case is considerably displaced from the anti-symmetric stretch orbit, the trajectory must necessarily couple to the symmetric stretch mode. If we were to launch the wavepacket at the outer slope of the saddle point, the anti-symmetric stretch periodic orbit would support recurrences by itself without coupling to the symmetric stretch mode. An example is the dissociation of IHI discussed in Section 7.6.2. [Pg.186]

All the peaks in the real part of the i -transform can be assigned to classical periodic orbits (see labels in Fig. 10.10). As predicted by (10.4.31) the first peak in Fig. 10.10 occurs at half the action of the 1 1 periodic orbit. A peak corresponding to the symmetric stretch orbit is missing. This was first noticed by Ezra et al. (1991). [Pg.266]

The symmetric stretch orbit is not the only periodic orbit emerging from the point x = = 0. There is a whole family of other periodic... [Pg.266]

Consider then an adiabatic well in the hyperspherical coordinate system. Classically, the motion of the periodic orbit at the well would be an oscillation from a point on the inner equipotential curve in the reactant channel to a point on the same equipotential curve in the product channel. This is qualitatively the motion of what are termed "resonant periodic orbits" (RPO s). For example the RPO s of the IHI system are given in Fig. 5. Thus, finding adiabatic wells in the radial coordinate system corresponds to finding RPO s and quantizing their action. Note that in Fig. 5 we have also plotted all the periodic orbit dividing surfaces (PODS) of the system, except for the symmetric stretch. By definition, a PODS is a periodic orbit that starts and ends on different equi-potentials. Thus the symmetric stretch PODS would be an adiabatic well for an adiabatic surface in reaction path coordinates. However, the PODS in the entrance and exit channels shown in Fig. 5 may be considered as adiabatic barrieres in either the radial or reaction path coordinate systems. Here, the barrier in radial coordinates, has quantally a tunneling path between the entrance and exit channels. [Pg.364]

PES for a long time, i.e. which does not dissociate either on the upper or on the lower PES. As discussed by Weide et the short-time dynamics of the wavepacket which does not quickly dissociate is governed by a periodic classical orbit that basically performs bending motion in the deep potential well. For a more detailed discussion of diffuse structures and periodic classical orbits, see Ref. 1. Thus, in contrast to H2S and the excitation of ozone in the Chappuis band, the diffuse structures are due to bending excitation rather than due to excitation of the symmetric stretch mode. Because the equilibrium angles in the two electronic states are so drastically different, the progression is long. [Pg.501]


See other pages where Periodic orbit symmetric stretch is mentioned: [Pg.186]    [Pg.527]    [Pg.546]    [Pg.548]    [Pg.549]    [Pg.550]    [Pg.553]    [Pg.555]    [Pg.555]    [Pg.557]    [Pg.562]    [Pg.563]    [Pg.567]    [Pg.569]    [Pg.570]    [Pg.570]    [Pg.597]    [Pg.598]    [Pg.598]    [Pg.186]    [Pg.186]    [Pg.187]    [Pg.188]    [Pg.189]    [Pg.192]    [Pg.265]    [Pg.213]    [Pg.68]    [Pg.121]    [Pg.124]   
See also in sourсe #XX -- [ Pg.185 ]




SEARCH



Orbit symmetric

Orbital period

Orbitals symmetric

Period-4 orbit

Periodic orbit, symmetric

Periodic orbits

Symmetric stretch

Symmetric stretch orbit

Symmetrical stretch

Symmetrical stretching

© 2024 chempedia.info