Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pericyclic reactions symmetry correlations between

Kenichi Fukui and Roald Hoffmann won the Nobel prize in 1981 (Woodward died in 1979 and so couldn t share this prize he had already won the Nobel prize in 1965 for his work on synthesis) for the application of orbital symmetry to pericyclic reactions. Theirs is an alternative description to the frontier orbital method we have used and you need to know a little about it. They considered a more fundamental correlation between the symmetry of all the orbitals in the starting materials and all the orbitals in the products. This is rather too complex for our consideration here, and we shall concentrate only on a summary of the conclusions—the Woodward-Hoffmann rules. The most important of these states ... [Pg.922]

The photochemistry of alkenes, dienes, and conjugated polyenes in relation to orbital symmetry relationships has been the subject of extensive experimental and theoretical studyThe analysis of concerted pericyclic reactions by the principles of orbital symmetry leads to a complementary relationship between photochemical and thermal reactions. A process that is forbidden thermally is allowed photochemically and vice versa. The complementary relationship between thermal and photochemical reactions can be illustrated by considering some of the reaction types discussed in Chapter 10 and applying orbital symmetry considerations to the photochemical mode of reaction. The case of [2Tr- -2Tr] cycloaddition of two alkenes, which was classified as a forbidden thermal reaction (see Section 10.1), can serve as an example. The correlation diagram (Figure 12.17) shows that the ground state molecules would lead to a doubly excited state of cyclobutane, and would therefore involve a prohibitive thermal activation energy. [Pg.1097]

MOs, while tlie two 7t c orbitals lead to the tt and tt MOs. In the initial stage of (he dimerization, the interaction between two ethylencs is weak so that 7t+ and tt. lie far below the n+ and tt levels, so that only 7t+ and rr are occupied. Of the a orbitals of cyclobutane described earlier, only those related to the tt., 7t1 and nl levels by symmetry are shown in Figure 11.1. Not all the occupied MOs of the reactant lead to occupied orbitals in the product. In particular, tt. correlates with one component of the empty set in cyclobutane. The tt+ combination ultimately becomes one component of the filled set in cyclobutane. So the reaction is symmetry forbidden. The reader should carefully compare the correlation diagram for ethylene dimerization here with the Ho + O2 reaction in ITgure 5.8. flie two correlation diagrams are very similar, as they should be, since in this instance the spatial dfstributions of tt and n " are similar to those of and respectively, in H2. These two reactions are probably the premier examples of symmetry-forbidden reactions. A related symmetry-allowed example is the concerted cycloaddition of ethylene and butadiene, the Diels-Alder reaction. We shall not cover the orbital symmetry rules for organic, pericyclic reactions. There are several excellent reviews that the reader should consult.But it should be pointed out that the orbital symmetry rules have stereochemical implications in terms of the reaction path and products formed. The development of these rules by Woodward and Hoffmann... [Pg.192]


See other pages where Pericyclic reactions symmetry correlations between is mentioned: [Pg.255]    [Pg.1244]    [Pg.1244]    [Pg.63]    [Pg.241]    [Pg.73]    [Pg.315]    [Pg.333]    [Pg.459]    [Pg.286]    [Pg.421]    [Pg.17]    [Pg.333]   


SEARCH



Correlation between

Pericyclic

Pericyclic reactions

Reaction between

Symmetry correlation

© 2024 chempedia.info