Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pauli Hamiltonian magnetic properties

In general, they can all be properly dealt with in the framework of perturbation (response) theory. According to the discussion in section 5.4, we may add external electromagnetic fields acting on individual electrons to the one-electron terms in the Hamiltonian of Eq. (8.66). Fields produced by other electrons, so that contributions to the one- and two-electron interaction operators in Eq. (8.66) arise, are not of this kind as they are considered to be internal and are properly accounted for in the Breit (section 8.1) or Breit-Pauli Hamiltonians (section 13.2). Although the extemal-field-free Breit-Pauli Hamiltonian comprises all internal interactions, such as spin-spin and spin-other-orbit terms, they may nevertheless also be considered as a perturbation in molecular property calculations. While our derivation of the Breit-Pauli Hamiltonian did not include additional external fields (such as the magnetic field applied in magnetic resonance spectroscopies), we now need to consider these fields as well. [Pg.568]

A number of static perturbations arise from internal interactions or fields, which are neglected in the nonrelativistic Born-Oppenheimer electronic Hamiltonian. The relativistic correction terms of the Breit-Pauli Hamiltonian are considered as perturbations in nonrelativistic quantum chemistry, including Darwin corrections, the mass-velocity correction, and spin-orbit and spin-spin interactions. Some properties, such as nuclear magnetic resonance shielding tensors and shielding polarizabilities, are computed from perturbation operators that involve both internal and external fields. [Pg.148]

Some of the terms included in the Breit-Pauli Hamiltonian also describe small interactions that can be probed experimentally by inducing suitable excitations in the electron or nuclear spin space, giving rise to important contributions to observable NMR and ESR parameters. In particular, for molecular properties for which there are interaction mechanisms involving the electron spin, also the spin-orbit interaction (O Eqs. 11.13 and O 11.14) becomes important The Breit-Pauli Hamiltonian in O Eqs. 11.5-11.22, however, only includes molecule-external field interactions through the presence of a scalar electrostatic potential 0 (and the associated electric field F) and the appearance of the magnetic vector potential in the mechanical momentum operator (O Eq. 11.23). In order to extract in more detail the interaction between the electronic structure of a molecule and an external electromagnetic field, we need to consider in more detail the form of the scalar and vector potentials. [Pg.367]

The electron Hamiltonian (15) describes the so-called orbital exchange coupling in a three-dimensional (3D) crystal lattice. The Pauli matrices, cr O ), have the same properties as the z-component spin operator with S = As a i) represents not a real spin but orbital motion of electrons, it is called pseudo spin. For the respective solid-state 3D-exchange problem, basic concepts and approximations were well developed in physics of magnetic phase transitions. The key approach is the mean-fleld approximation. Similar to (8), it is based on the assumption that fluctuations, s(i) = terms quadratic in s i) can be neglected. We do not go into details here because the respective solution is well-known and discussed in many basic texts of solid state physics (e.g., see [15]). [Pg.695]


See other pages where Pauli Hamiltonian magnetic properties is mentioned: [Pg.24]    [Pg.102]    [Pg.759]    [Pg.520]    [Pg.582]    [Pg.597]    [Pg.364]    [Pg.365]    [Pg.300]    [Pg.123]    [Pg.16]    [Pg.424]    [Pg.1449]    [Pg.123]    [Pg.222]    [Pg.155]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Hamiltonian properties

Magnetic Hamiltonians

Pauli Hamiltonian

Pauly

© 2024 chempedia.info