Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Passivation diagrams

In tenns of an electrochemical treatment, passivation of a surface represents a significant deviation from ideal electrode behaviour. As mentioned above, for a metal immersed in an electrolyte, the conditions can be such as predicted by the Pourbaix diagram that fonnation of a second-phase film—usually an insoluble surface oxide film—is favoured compared with dissolution (solvation) of the oxidized anion. Depending on the quality of the oxide film, the fonnation of a surface layer can retard further dissolution and virtually stop it after some time. Such surface layers are called passive films. This type of film provides the comparably high chemical stability of many important constmction materials such as aluminium or stainless steels. [Pg.2722]

Fig. 6. Schematic diagram showing the use of transparent silica aerogel in passive solar collection. Reproduced from Ref. 53. Fig. 6. Schematic diagram showing the use of transparent silica aerogel in passive solar collection. Reproduced from Ref. 53.
Pourbaix diagrams are only thermodynamic predictions and yield no information about the kinetics of the reactions involved nor are the influences of other ionic species which may be present in the solution included. Complexing ions, particularly haUdes, can interfere with passivation and can influence... [Pg.276]

The CBD diagram can provide various lands of information about the performance of an aUoy/medium system. The technique can be used for a direc t calculation of the corrosion rate as well as for indicating the conditions of passivity and tendency of the metal to suffer local pitting and crevice attack. [Pg.2432]

Rectifiers working according to the control diagram in Fig. 8-6 are used for anodic corrosion protection in passivatable systems that go spontaneously from the passive to the active state when the protection current is switched off [12]. The predetermined nominal voltage between reference electrode and protected object is compared with the actual voltage f/j in a differential display unit D. The difference AU = is amplified in a voltage amplifier SV to VqAU. This... [Pg.235]

Pourbaix has evaluated all possible equilibria between a metal M and HjO (see Table 1.7) and has consolidated the data into a single potential-pH diagram, which provides a pictorial summary of the anions and cations (nature and activity) and solid oxides (hydroxides, hydrated oxides and oxides) that are at equilibrium at any given pH and potential a similar approach has been adopted for certain M-H2O-X systems where A" is a non-metal, e.g. Cr, CN , CO, SOj , POj", etc. at a defined concentration. These diagrams give the activities of the metal cations and anions at any specified E and pH, and in order to define corrosion in terms of an equilibrium activity, Pourbaix has selected the arbitrary value of 10 ° g ion/1, i.e. corrosion of a metal is defined in terms of the pH and potential that give an equilibrium activity of metal cations or anions > 10 g ion/1 conversely, passivity and immunity are defined in terms of an equilibrium activity of < 10 g ion/1. (Note that g ion/1 is used here because this is the unit used by Pourbaix in the S.I, the relative activity is dimensionless.)... [Pg.65]

It should be noted that Fig. 1.15 (top) is based entirely on thermodynamic data and is therefore correctly described as an equilibrium diagram, since it shows the phases (nature and activity) that exist at equilibrium. However, the concepts implicit in the terms corrosion, immunity and passivity lie outside the realm of thermodynamics, and, for example, passivity involves both thermodynamic and kinetic concepts it follows that Fig. 1.15 (bottom) cannot be regarded as a true equilibrium diagram, although it is based on one that has been constructed entirely from thermodynamic data. [Pg.67]

Although the zones of corrosion, immunity and passivity are clearly of fundamental importance in corrosion science it must be emphasised again that they have serious limitations in the solution of practical problems, and can lead to unfortunate misconceptions unless they are interpreted with caution. Nevertheless, Pourbaix and his co-workers, and others, have shown that these diagrams used in conjunction with E-i curves for the systems under consideration can provide diagrams that are of direct practical use to the corrosion engineer. It is therefore relevant to consider the advantages and limitations of the equilibrium potential-pH diagrams. [Pg.68]

The Af-HjO diagrams present the equilibria at various pHs and potentials between the metal, metal ions and solid oxides and hydroxides for systems in which the only reactants are metal, water, and hydrogen and hydroxyl ions a situation that is extremely unlikely to prevail in real solutions that usually contain a variety of electrolytes and non-electrolytes. Thus a solution of pH 1 may be prepared from either hydrochloric, sulphuric, nitric or perchloric acids, and in each case a different anion will be introduced into the solution with the consequent possibility of the formation of species other than those predicted in the Af-HjO system. In general, anions that form soluble complexes will tend to extend the zones of corrosion, whereas anions that form insoluble compounds will tend to extend the zone of passivity. However, provided the relevant thermodynamic data are aveiil-able, the effect of these anions can be incorporated into the diagram, and diagrams of the type Af-HjO-A" are available in Cebelcor reports and in the published literature. [Pg.68]

The effect of anions on the zones of corrosion and passivation can be exemplified by a comparison of the Pb-H20 and Pb-H20-S04 equilibrium diagrams (see Section 4.3, Figs. 4.13 and 4.14) and it can be seen that in the presence of SOl the corrosion zone corresponding with stability of... [Pg.68]

The fact that oxides can exist as metastable phases is illustrated by the Ni-HjO diagram (Fig. 1.18) in which the curves for the various oxides of nickel have been extrapolated into the acid region of Ni stability, and this diagram emphasises the fact that nickel can be passivated outside the region of thermodynamic stability of the oxides". [Pg.73]

Fig. 1.38(Equilibrium potential-pH diagram for the Cr-H20 system and (< ) potential-pH diagram showing zones of corrosion, passivity and immunity (after Pourbaix )... [Pg.112]

The form of Figure 1.43 is common among many metals in solutions of acidic to neutral pH of non-complexing anions. Some metals such as aluminium and zinc, whose oxides are amphoteric, lose their passivity in alkaline solutions, a feature reflected in the potential/pH diagram. This is likely to arise from the rapid rate at which the oxide is attacked by the solution, rather than from direct attack on the metal, although at low potential, active dissolution is predicted thermodynamically The reader is referred to the classical work of Pourbaix for a full treatment of potential/pH diagrams of pure metals in equilibrium with water. [Pg.135]

Fig. 1.43 Schematic potential/pH diagram for a metal M in equilibrium with water in the absence of complexing species. Line a represents equations 1.117 and 1.122. Line b represents equations 1.118 and 1.123. Line c represents equations 1.119 and 1.124. The stable phases are marked in bold. The metastable phase is in parentheses. The broken line is an extrapolation of equation 1.123 and indicates possible metastable passivity... Fig. 1.43 Schematic potential/pH diagram for a metal M in equilibrium with water in the absence of complexing species. Line a represents equations 1.117 and 1.122. Line b represents equations 1.118 and 1.123. Line c represents equations 1.119 and 1.124. The stable phases are marked in bold. The metastable phase is in parentheses. The broken line is an extrapolation of equation 1.123 and indicates possible metastable passivity...
Fig. 1.56(a) E-i curves and experimental potential-pH diagram for Armco iron in chloride-free solutions of different pHs (A is the unpolarised potential and P the passivation potential) and (b) E—i curves and experimental potential-pH diagram for Armco iron in solutions of different pHs containing 10 mol dm of chloride ion (r is the rupture potential and p the protection potential). (After Pourbaix )... [Pg.180]

Previous considerations of pitting have been largely confined to metals and alloys that have a strong tendency to passivate, but since the pitting of copper has a number of unusual features it is appropriate to consider it in some detail. Reference to the potential-pH diagram for the Cu-H O (Section 4.2) system shows that in neutral solutions at the potentials encountered in oxygenated waters the stable form of copper is Cu O, and the corrosion resistance of copper thus depends upon whether or not the CU2O forms a protective film. [Pg.184]

Over the years, Pourbaix and his co-workers in the CEBELCOR Institute, founded under his direction, extended these diagrams by including lines for metastable compounds. Figure 7.66 illustrates such a presentation for the Fe-O system over the temperature range 830-2200 K. Pourbaix used these diagrams as a basis for a discussion of the stability of metallic iron (solid, liquid and vapour phases), the oxides of iron as a function of oxygen pressure and temperature from which he explained the protection of iron at high temperature by immunity and passivation. He also pointed out the... [Pg.1111]

Before considering the principles of this method, it is useful to distinguish between anodic protection and cathodic protection (when the latter is produced by an external e.m.f.). Both these techniques, which may be used to reduce the corrosion of metals in contact with electrolytes, depend upon the electrochemical mechanisms that result from changing the potential of a metal. The appropriate potential-pH diagram for the Fe-H20 system (Section 1.4) indicates the magnitude and direction of the changes in the potential of iron immersed in water (pH about 7) necessary to make it either passive or immune in the former case the stability of the metal depends on the formation of a protective film of metal oxide (passivation), whereas in the latter the metal itself is thermodynamically stable and egress of metal ions from the lattice into the solution is thus prevented. [Pg.261]

Although important contributions in the use of electrical measurements in testing have been made by numerous workers it is appropriate here to refer to the work of Stern and his co-workerswho have developed the important concept of linear polarisation, which led to a rapid electrochemical method for determining corrosion rates, both in the laboratory and in plant. Pourbaix and his co-workers on the basis of a purely thermodynamic approach to corrosion constructed potential-pH diagrams for the majority of metal-HjO systems, and by means of a combined thermodynamic and kinetic approach developed a method of predicting the conditions under which a metal will (a) corrode uniformly, (b) pit, (c) passivate or (d) remain immune. Laboratory tests for crevice corrosion and pitting, in which electrochemical measurements are used, are discussed later. [Pg.1004]


See other pages where Passivation diagrams is mentioned: [Pg.631]    [Pg.52]    [Pg.631]    [Pg.52]    [Pg.2722]    [Pg.2730]    [Pg.276]    [Pg.2428]    [Pg.2429]    [Pg.2430]    [Pg.2431]    [Pg.70]    [Pg.480]    [Pg.150]    [Pg.70]    [Pg.72]    [Pg.73]    [Pg.95]    [Pg.113]    [Pg.134]    [Pg.135]    [Pg.179]    [Pg.186]    [Pg.443]    [Pg.546]    [Pg.659]    [Pg.766]    [Pg.928]    [Pg.939]    [Pg.944]    [Pg.265]    [Pg.304]    [Pg.1116]    [Pg.1122]   
See also in sourсe #XX -- [ Pg.71 , Pg.72 , Pg.73 , Pg.74 ]




SEARCH



© 2024 chempedia.info