Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partition canonical

The grand canonical ensemble is a set of systems each with the same volume V, the same temperature T and the same chemical potential p (or if there is more than one substance present, the same set of p. s). This corresponds to a set of systems separated by diathennic and penneable walls and allowed to equilibrate. In classical thennodynamics, the appropriate fimction for fixed p, V, and Tis the productpV(see equation (A2.1.3 7)1 and statistical mechanics relates pV directly to the grand canonical partition function... [Pg.375]

This behaviour is characteristic of thennodynamic fluctuations. This behaviour also implies the equivalence of various ensembles in the thermodynamic limit. Specifically, as A —> oo tire energy fluctuations vanish, the partition of energy between the system and the reservoir becomes uniquely defined and the thennodynamic properties m microcanonical and canonical ensembles become identical. [Pg.399]

The T-P partition ftmction can also be written in temis of the canonical partition function Qj as ... [Pg.417]

Thennodynamics of ideal quantum gases is typically obtained using a grand canonical ensemble. In principle this can also be done using a canonical ensemble partition function, Q =. exp(-p E ). For the photon and... [Pg.424]

This result is identical to that obtained from a canonical ensemble approach in the thennodynamic limit, where the fluctuations in N vanish and (N) = N. The single-particle expression for the canonical partition fiinction = (-" can be evaluated using ih r rV i f<,2M) or a particle in a cubical box of volume V. [Pg.428]

It may be iisefiil to mention here one currently widely applied approximation for barrierless reactions, which is now frequently called microcanonical and canonical variational transition state theory (equivalent to the minimum density of states and maximum free energy transition state theory in figure A3,4,7. This type of theory can be understood by considering the partition fiinctions Q r ) as fiinctions of r similar to equation (A3,4.108) but with F (r ) instead of V Obviously 2(r J > Q so that the best possible choice for a... [Pg.784]

The canonical ensemble corresponds to a system of fixed and V, able to exchange energy with a thennal bath at temperature T, which represents the effects of the surroundings. The thennodynamic potential is the Helmholtz free energy, and it is related to the partition fiinction follows ... [Pg.2246]

Since H=K. + V, the canonical ensemble partition fiinction factorizes into ideal gas and excess parts, and as a consequence most averages of interest may be split into corresponding ideal and excess components, which sum to give the total. In MC simulations, we frequently calculate just the excess or configurational parts in this case, y consists just of the atomic coordinates, not the momenta, and the appropriate expressions are obtained from equation b3.3.2 by replacing fby the potential energy V. The ideal gas contributions are usually easily calculated from exact... [Pg.2246]

Statistical mechanics may be used to derive practical microscopic fomuilae for themiodynamic quantities. A well-known example is tire virial expression for the pressure, easily derived by scaling the atomic coordinates in the canonical ensemble partition fiinction... [Pg.2248]

The canonical ensemble partition function is the phase space integral... [Pg.200]

The canonical ensemble is the name given to an ensemble for constant temperature, number of particles and volume. For our purposes Jf can be considered the same as the total energy, (p r ), which equals the sum of the kinetic energy (jT(p )) of the system, which depends upon the momenta of the particles, and the potential energy (T (r )), which depends upon tlie positions. The factor N arises from the indistinguishability of the particles and the factor is required to ensure that the partition function is equal to the quantum mechanical result for a particle in a box. A short discussion of some of the key results of statistical mechanics is provided in Appendix 6.1 and further details can be found in standard textbooks. [Pg.319]

In an ideal gas there are no interactions between the particles and so the potential ener function, 1 ), equals zero. exp(- f (r )/fcBT) is therefore equal to 1 for every gas partic in the system. The integral of 1 over the coordinates of each atom is equal to the volume, ai so for N ideal gas particles the configurational integral is given by (V = volume). T1 leads to the following result for the canonical partition function of an ideal gas ... [Pg.427]

A consequence of writing the partition function as a product of a real gas and an ideal g part is that thermod)mamic properties can be written in terms of an ideal gas value and excess value. The ideal gas contributions can be determined analytically by integrating o the momenta. For example, the Helmholtz free energy is related to the canonical partitii function by ... [Pg.427]

Free energy calculations rely on the following thermodynamic perturbation theory [6-8]. Consider a system A described by the energy function = 17 + T. 17 = 17 (r ) is the potential energy, which depends on the coordinates = (Fi, r, , r ), and T is the kinetic energy, which (in a Cartesian coordinate system) depends on the velocities v. For concreteness, the system could be made up of a biomolecule in solution. We limit ourselves (mostly) to a classical mechanical description for simplicity and reasons of space. In the canonical thermodynamic ensemble (constant N, volume V, temperature T), the classical partition function Z is proportional to the configurational integral Q, which in a Cartesian coordinate system is... [Pg.172]

The partition function Z is given in the large-P limit, Z = limp co Zp, and expectation values of an observable are given as averages of corresponding estimators with the canonical measure in Eq. (19). The variables and R ( ) can be used as classical variables and classical Monte Carlo simulation techniques can be applied for the computation of averages. Note that if we formally put P = 1 in Eq. (19) we recover classical statistical mechanics, of course. [Pg.93]

To introduce the transfer matrix method we repeat some well-known facts for a 1-D lattice gas of sites with nearest neighbor interactions [31]. Its grand canonical partition function is given by... [Pg.446]

In statistical mechanics the properties of a system in equilibrium are calculated from the partition function, which depending on the choice for the ensemble considered involves a sum over different states of the system. In the very popular canonical ensemble, that implies a constant number of particles N, volume V, and temperature T conditions, the quasiclassical partition function Q is... [Pg.669]

The Liouvillian iLo- = Ho, , where , is the Poisson bracket, describes the evolution governed by the bath Hamiltonian Hq in the held of the fixed Brownian particles. The angular brackets signify an average over a canonical equilibrium distribution of the bath particles with the two Brownian particles fixed at positions Ri and R2, ( -)0 = Z f drNdpNe liW J , where Zo is the partition function. [Pg.119]

The path-integral (PI) representation of the quantum canonical partition function Qqm for a quantized particle can be written in terms of the effective centroid potential IT as a classical configuration integral ... [Pg.90]

In centroid path integral, the canonical QM partition function of a hybrid quantum and classical system, consisting of one quantized atom for convenience, can be written as follows ... [Pg.93]

The additional factor of Qi(V, T) in Eq. (21) makes the leading term in the sum unity, as suggested by the usual expression for the cluster expansion in terms of the grand canonical partition function. Note that i in the summand of Eq. (20) is not explicitly written in Eq. (21). It has been absorbed in the n , but its presense is reflected in the fact that the population is enhanced by one in the partition function numerator that appears in the summand. Equation (21) adopts precisely the form of a grand canonical average if we discover a factor of (9(n, V, T) in the summand for the population weight. Thus... [Pg.321]


See other pages where Partition canonical is mentioned: [Pg.233]    [Pg.375]    [Pg.398]    [Pg.399]    [Pg.402]    [Pg.409]    [Pg.424]    [Pg.427]    [Pg.565]    [Pg.2268]    [Pg.149]    [Pg.198]    [Pg.201]    [Pg.426]    [Pg.434]    [Pg.41]    [Pg.202]    [Pg.13]    [Pg.19]    [Pg.469]    [Pg.514]    [Pg.110]    [Pg.681]    [Pg.111]    [Pg.311]    [Pg.320]    [Pg.321]    [Pg.325]    [Pg.327]   
See also in sourсe #XX -- [ Pg.469 ]




SEARCH



© 2024 chempedia.info