Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle interface alteration charge

These studies indicate that the charge transfer at the metal-oxide interface alters the electronic structure of the metal thin film, which in turn affects the adsorption of molecules to these surfaces. Understanding the effect that an oxide support has on molecular adsorption can give insight into how local environmental factors control the reactivity at the metal surface, presenting new avenues for tuning the properties of metal thin films and nanoparticles. Coupled with the knowledge of how particle size and shape modify the metal s electronic properties, these results can be used to predict how local structure and environment influence the reactivity at the metal surface. [Pg.16]

These forces and hence the stability of the dispersions can be altered/controlled by the adsorption of ions, surfactants, or polymers at the solid-liquid interface. Adsorption of surfactants and polymers at the solid-liquid interface depends on the nature of the surfactant or polymer, the solvent, and the substrate. Ionic surfactants adsorbing on oppositely charged surfaces exhibit a typical four-region isotherm. Such adsorption can alter the dispersion stability mainly by changing the double layer interaction, which depends on the extent of adsorption. Thus, it is seen that alumina suspensions are destabilized by the adsorption of SDS when the zeta potential is reduced to zero. At higher concentrations, bilayered surfactant adsorption can occur with changes in wettability and flocculation of the particles by altering the hydrophobic interactions. [Pg.435]

The attractive forces between suspension particles are considered to be exclusively London-van der Waals interactions (except where interparticle bridging by long polymeric chains occurs). The repulsive forces, as discussed in Chapter 8, comprise both electrostatic repulsion and entropic and enthalpic forces. In aqueous systems the hydrophobic dispersed phase is coated with hydrophilic surfactant or polymer. As adsorption of surfactant or polymer (or, of course, both) at the solid-liquid interface alters the negative charge on the suspension particles, the adsorbed layer may not necessarily confer a repulsive effect. Ionic surfactants may neutralize the charge of the particles and result in their flocculation. The addition of electrolyte such as aluminium chloride can further complicate interpretation of results electrolyte can alter the charge on the suspension particles by specific adsorption, and can affect the solution properties of the surfactants and polymers in the formulation. Some aspects of the application of DLVO theory to pharmaceutical suspensions and the use of computer programmes to calculate interaction curves are discussed by Schneider et al. [4]. [Pg.570]

Dispersion properties can be modified by adsorption of surfactants at the solid-liquid interface. Surfactant adsorption can alter the dispersion properties by changing the van der Waals attraction, electrostatic repulsion, and the steric forces between the particles as discussed earlier. The extent of the modification depends on the adsorption density (surface coverage), packing and orientation of molecules at the interface, and the nature of charges on the molecule. Therefore, it is important to first discuss the adsorption process itself in terms of the dominant mechanisms and possible orientations. [Pg.409]

Natural Surfactants and Interfacial Properties. The action of the natural process surfactants has been studied in some detail [100-104]. The impact arises due to their adsorption at surfaces and interfaces, by which they alter surface electric charges and interfacial tensions. Figure 5 shows an example of the steps involved in determining the surface, interfacial, and other properties of dispersed bitumen drops, solid particles, and gas bubbles in aqueous solution. The samples analysed would be based on batch extraction tests involving different oil sand types and different process conditions. [Pg.382]


See other pages where Particle interface alteration charge is mentioned: [Pg.332]    [Pg.41]    [Pg.250]    [Pg.79]    [Pg.80]    [Pg.417]    [Pg.601]    [Pg.196]    [Pg.444]    [Pg.161]    [Pg.204]    [Pg.135]    [Pg.763]    [Pg.1729]    [Pg.437]    [Pg.5]    [Pg.43]    [Pg.272]    [Pg.293]    [Pg.121]    [Pg.1723]    [Pg.463]    [Pg.348]    [Pg.486]    [Pg.1]    [Pg.264]    [Pg.484]    [Pg.133]    [Pg.412]    [Pg.149]    [Pg.237]    [Pg.549]    [Pg.53]    [Pg.266]    [Pg.7]   
See also in sourсe #XX -- [ Pg.55 , Pg.56 , Pg.57 , Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 ]




SEARCH



Charged particles

Interface alteration

Interface alteration particle charging

Interface alteration particle charging

Interfaces charged

Particle charge

Particle charging

© 2024 chempedia.info