Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle diameter pressure drop, maximization

The catalyst support may either be inert or play a role in catalysis. Supports typically have a high internal surface area. Special shapes (e.g., trilobed particles) are often used to maximize the geometric surface area of the catalyst per reactor volume (and thereby increase the reaction rate per unit volume for diffusion-limited reactions) or to minimize pressure drop. Smaller particles may be used instead of shaped catalysts however, the pressure drop increases and compressor costs become an issue. For fixed beds, the catalyst size range is 1 to 5 mm (0.04 to 0.197 in). In reactors where pressure drop is not an issue, such as fluidized and transport reactors, particle diameters can average less than 0.1 mm (0.0039 in). Smaller particles improve fluidization however, they are entrained and have to be recovered. In slurry beds the diameters can be from about 1.0 mm (0.039 in) down to 10 Jim or less. [Pg.25]

The adsorbent particles are normally used as beads, extrudates, or granules (-0.1 -0.3 cm equivalent diameters) in conventional H2 PSA processes. The particle diameters can be further reduced to increase the feed gas impurity mass transfer rates into the adsorbent at the cost of increased column pressure drop, which adversely affects the separation performance. The particle diameters, however, cannot be reduced indefinitely and adsorption kinetics can become limiting for very fast cycles48 New adsorbent configurations that offer (i) substantially less resistance to gas flow inside an adsorber and, thus, less pressure drop (ii) exhibit very fast impurity mass transfer coefficients and (iii) minimize channeling are the preferred materials for RPSA systems. At the same time, the working capacity of the material must be high and the void volume must be small in order to minimize the adsorber size and maximize the product recovery. Various materials satisfy many of the requirements fisted above, but not all of them simultaneously. [Pg.438]

By maximizing the particle diameter, the pressure drop is minimized. However, the rate of diffusion of heat and mass in and out of the particle is poorer and therefore productivity suffers. [Pg.328]

The TURBULENT DP COEF is the appropriate performance indicator for catalyst pressure drop, and is a better indicator than pressure drop itself, since it is independent of all the known effects of flow rate (both hydrocarbon and steam), gas density, viscosity, catalyst particle diameter, and void fraction. Pressure drop itself is important though, due to the stress it imposes on the catalyst (which raises the potential for crushing) and normally the optimization system has an upper bound on pressure drop. That bound may or may not be active at the solution, depending on the catalyst condition, and whether the solution is maximizing throughput. [Pg.303]

One can see as granular densities and pressures grow very quickly near the plane of jet interaction. Thus, solids deceleration is carried out in granular shock waves. The rapid decrease in axial components of particle velocities confirms a wavy nature of the granular flow. Radial particle velocity distributions on the jet periphery demonstrate the gas influence on the particle removal from the milling zone. This influence is observed for particles, which are smaller than 10 pm. The intensity of particle chaotic motion (relative particle-particle velocities) drops quickly with decrease in the particle diameters below 15 pm. This drop is caused by particle deceleration in a viscous gas (if collisions are elastic) and additionally by chaotic particle-particle collisions (if collisions are inelastic). This collisional intensity decrease causes a maximum of the relative particle-particle chaotic velocity at some distance from the plane of symmetry that is more explicit for inelastic collisions. Partial particle nonelasticity defines considerable drop in the chaotic velocity. The formation of a maximum of the collisional capacity at some distance from the plane of symmetry means that the maximal probability of particle fragmentation has to be also there. [Pg.698]


See other pages where Particle diameter pressure drop, maximization is mentioned: [Pg.220]    [Pg.381]    [Pg.590]    [Pg.766]    [Pg.66]    [Pg.342]    [Pg.266]    [Pg.484]    [Pg.66]    [Pg.61]    [Pg.383]   
See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Diameters, particle

Maxim

Maximizer

Pressure drop particles

© 2024 chempedia.info