Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle continued distribution

The RDX particle size distribution must be carefully controlled to produce castable slurries of RDX and TNT having acceptable viscosity. Several classes of RDX are produced to satisfy requirements for the various pressed and cast RDX-based compositions. A continuous process for medium-scale production of RDX has been developed by Biazzi based on the Woolwich process (79,151—154). [Pg.16]

Tantalum Compounds. Potassium heptafluorotantalate [16924-00-8] K TaF, is the most important tantalum compound produced at plant scale. This compound is used in large quantities for tantalum metal production. The fluorotantalate is prepared by adding potassium salts such as KCl and KF to the hot aqueous tantalum solution produced by the solvent extraction process. The mixture is then allowed to cool under strictiy controlled conditions to get a crystalline mass having a reproducible particle size distribution. To prevent the formation of oxyfluorides, it is necessary to start with reaction mixtures having an excess of about 5% HF on a wt/wt basis. The acid is added directiy to the reaction mixture or together with the aqueous solution of the potassium compound. Potassium heptafluorotantalate is produced either in a batch process where the quantity of output is about 300—500 kg K TaFy, or by a continuously operated process (28). [Pg.327]

Continuous emulsion copolymerization processes for vinyl acetate and vinyl acetate—ethylene copolymer have been reported (59—64). CycHc variations in the number of particles, conversion, and particle-size distribution have been studied. Control of these variations based on on-line measurements and the use of preformed latex seed particles has been discussed (61,62). [Pg.464]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

Aerosol Dynamics. Inclusion of a description of aerosol dynamics within air quaUty models is of primary importance because of the health effects associated with fine particles in the atmosphere, visibiUty deterioration, and the acid deposition problem. Aerosol dynamics differ markedly from gaseous pollutant dynamics in that particles come in a continuous distribution of sizes and can coagulate, evaporate, grow in size by condensation, be formed by nucleation, or be deposited by sedimentation. Furthermore, the species mass concentration alone does not fliUy characterize the aerosol. The particle size distribution, which changes as a function of time, and size-dependent composition determine the fate of particulate air pollutants and their... [Pg.382]

Preparation of Dispersion. The reduction process is a two-phase reaction between soluble reducing agent and insoluble dye particles, and therefore the rate of reduction is influenced by the particle size distribution of the dye dispersion. The smaller the particle size the greater the surface area and hence the more rapid the reduction process. However, if the particles are too small, migration will occur in continuous dyeing. It is therefore extremely important to control the size and range of particle size and this is a closely guarded piece of dyestuff manufacturers know-how. [Pg.358]

When a process is continuous, nucleation frequently occurs in the presence of a seeded solution by the combined effec ts of mechanical stimulus and nucleation caused by supersaturation (heterogeneous nucleation). If such a system is completely and uniformly mixed (i.e., the product stream represents the typical magma circulated within the system) and if the system is operating at steady state, the particle-size distribution has definite hmits which can be predic ted mathematically with a high degree of accuracy, as will be shown later in this section. [Pg.1656]

Where the polyurethane comprises <30% of the blend, the polyurethane remains in discrete droplets within the polyacetal matrix. In this range the particle size and particle size distribution of the elastomer particles are of importance. Where the elastomer component is in excess of 30%, interpenetrating polymer networks exist in the sense that there are two interpenetrating continuous phases (as opposed to two cross-linked interpenetrating polymer systems). [Pg.544]

Coagulation The process of particulates sticking together on coming into contact, As the process continues, the particle size distribution becomes coarser and settles out. [Pg.1422]

The population balance accounts for the number of particles at each size in a continuous distribution and may be thought of as an extension of the more familiar overall mass balance to that of accounting for individual particles. [Pg.52]

Tailoring of the particle size of the crystals from industrial crystallizers is of significant importance for both product quality and downstream processing performance. The scientific design and operation of industrial crystallizers depends on a combination of thermodynamics - which determines whether crystals will form, particle formation kinetics - which determines how fast particle size distributions develop, and residence time distribution, which determines the capacity of the equipment used. Each of these aspects has been presented in Chapters 2, 3, 5 and 6. This chapter will show how they can be combined for application to the design and performance prediction of both batch and continuous crystallization. [Pg.190]

Hostomsky, J., 1987. Particle size distribution of agglomerated crystal product from a continuous crystallizer. Collection of Czechoslovakian Chemical Communications, 52, 1186-1197. [Pg.309]

Obviously, the theory outhned above can be applied to two- and three-dimensional systems. In the case of a two-dimensional system the Fourier transforms of the two-particle function coefficients are carried out by using an algorithm, developed by Lado [85], that preserves orthogonality. A monolayer of adsorbed colloidal particles, having a continuous distribution of diameters, has been investigated by Lado. Specific calculations have been carried out for the system with the Schulz distribution [86]... [Pg.156]

To achieve the desired cast density for Octol of 1.8g/cc it is necessary that the ratio of HMX TNT be 3 1. However, at this ratio the apparent viscosity, or efflux, is strongly dependent on the polymorphic variety of HMX used and on its particle size distribution. In the initial pilot production of Octol (Ref 3) it was found that for the desired efflux of < 15 sec, 60—70% of the solid HMX must consist of the beta-polymorph having particle diameters in the range of 500—800 microns. Such precise control of particle size was not possible at that time and early Octol casts were made at approximately 50 secs efflux. The economical production of Octol with a satisfactorily short efflux time continues to present a problem in loading shells with this expl (Refs 4, 11 29)... [Pg.409]

CAHN RG ELECTROBALANCE/SEDIMENTATION ACCESSORY. This app produces a continuous, visible chart record of the sediment weight collected on the balance pan. It has been evaluated for measuring particle size distributions of the primary expls Lead Styphnate, Lead Azide, Tetracene by Hutchinson (Ref 41). [Pg.526]

Most theoretical studies of heat or mass transfer in dispersions have been limited to studies of a single spherical bubble moving steadily under the influence of gravity in a clean system. It is clear, however, that swarms of suspended bubbles, usually entrained by turbulent eddies, have local relative velocities with respect to the continuous phase different from that derived for the case of a steady rise of a single bubble. This is mainly due to the fact that in an ensemble of bubbles the distributions of velocities, temperatures, and concentrations in the vicinity of one bubble are influenced by its neighbors. It is therefore logical to assume that in the case of dispersions the relative velocities and transfer rates depend on quantities characterizing an ensemble of bubbles. For the case of uniformly distributed bubbles, the dispersed-phase volume fraction O, particle-size distribution, and residence-time distribution are such quantities. [Pg.333]

Semi-continuous reactors can be used to produce very narrow or quite broad particle size distributions depending on the nature of the secondary feed stream and how it is added to the reactor. [Pg.5]

Fig. 2 Particle size distributions, (by volume) of the impeller-batch (top) and the micro-mixer-continuous-flow (bottom) processes when manufacturing the pigment Yellow 12. The cumulative distributions are given as well [11]... Fig. 2 Particle size distributions, (by volume) of the impeller-batch (top) and the micro-mixer-continuous-flow (bottom) processes when manufacturing the pigment Yellow 12. The cumulative distributions are given as well [11]...
Efforts to apply Equations (6) and (7) to distributions of Th isotopes in the oceans showed that the situation was more complex. For example. Bacon and Anderson (1982) measured vertical distributions of Th in the deep sea and found that both the particulate and dissolved fractions increased linearly with depth. While the former observation is predictable from Equation (7) if sinking particles continue to scavenge Th during their descent, the latter is inconsistent with Equation (6). Bacon and Anderson (1982) suggested that the data could best be explained by a reversible scavenging equilibrium maintained between dissolved and particulate Th. Thus Equation (6) must be modified to ... [Pg.467]

Leblanc and Fogler developed a population balance model for the dissolution of polydisperse solids that included both reaction controlled and diffusion-controlled dissolution. This model allows for the handling of continuous particle size distributions. The following population balance was used to develop this model. [Pg.154]

A small sample of a coal slurry containing particles with equivalent spherical diameters from 1 to 500 pm is introduced into the top of a water column 30 cm high. The particles that fall to the bottom are continuously collected and weighed to determine the particle size distribution in the slurry. If the solid SG is 1.4 and the water viscosity is 1 cP, over what time range must the data be obtained in order to collect and weigh all the particles in the sample ... [Pg.362]


See other pages where Particle continued distribution is mentioned: [Pg.29]    [Pg.640]    [Pg.642]    [Pg.171]    [Pg.27]    [Pg.290]    [Pg.270]    [Pg.417]    [Pg.161]    [Pg.31]    [Pg.52]    [Pg.493]    [Pg.1580]    [Pg.52]    [Pg.708]    [Pg.329]    [Pg.504]    [Pg.379]    [Pg.47]    [Pg.111]    [Pg.375]    [Pg.420]    [Pg.500]    [Pg.105]    [Pg.116]    [Pg.173]    [Pg.251]    [Pg.425]    [Pg.158]    [Pg.407]   
See also in sourсe #XX -- [ Pg.118 , Pg.120 ]




SEARCH



Continuous distributions

Particle Size Distribution in Continuous Comminution Process

Particle continued)

Particle distribution

© 2024 chempedia.info