Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Particle capillary colloidal filtration

Capillary colloidal filtration occurs when the dry substrate comes into contact with a dispersion and the pore surface is wetted by the dispersion liquid. The capillary suction of the substrate which occurs, in effect drives particles to the interface. If the surface is not permeable for the particles, the particles concentrate at the substrate-dispersion boundary and a compact layer is formed. The thickness of the compact layer grows with time according to the well-known square root time law (see Section 6.3.1), until the substrate is saturated with dispersion liquid or, in case of a dispersion of small colloidal particles, a stationary state due to back-diffusion occurs. Figure 6.8 summcirises the capillary filtration mode of dip-coating. [Pg.151]

Colloidal Crystalline Arrays Colloidal spheres of silica and of polymers can be made relatively monodisperse, with standard deviations of 4% of the mean diameter for silica and 1% for polymer latexes. The spheres pack as shown in Figure 11.22a from fluid dispersions into fee (sometimes hep or bcc) colloidal crystals (CC) by gravity, by membrane filtration, or by capillary forces at the surface of an evaporating dispersion (80-82). The crystalline order of the materials is strictly at the length scale of the packed colloidal particles the packing of the atoms and molecules within the silica and polymer particles is totally amorphous. The CCs diffract... [Pg.394]

Particle size. Particles greater than 7 pm are larger than blood capillaries ( 6 pm) and become entrapped in the capillary beds of the lungs (which may have fatal effects). The majority of particles that pass the lung capillary bed accumulate in the elements of the RES (spleen, liver and bone marrow). The degree of splenic uptake increases with particle size. Removal of particles > 200 nm is due to a non-phagocytic process (physical filtration) in the spleen and phagocytosis (by Kupffer cells) by the liver. Particles < 200 nm decreases splenic uptake and the particles are cleared by the liver and bone marrow. Colloidal particles not cleared by the RES can potentially exit the blood circulation via the sinusoidal fenestration of the liver and bone marrow. [Pg.153]

To analyze the aqueous phase for any of these substances, it must first be separated from the polymer particles. Both flocculation and membrane filtration techniques can be used for this purpose and they are described in more detail below. The detection of the substances listed above can then be performed with the usual array of analytical methods used for characterizing aqueous media. For the determination of emulsifiers, electrolytes and water-soluble monomers, ion chromatography (IC) and high-performance liquid chromatography (HPLC) are particularly suitable. The techniques of choice for characterizing oligomers are gel permeation chromatography (GPC) and capillary electrophoresis (CE). As these analytical techniques are not specific to colloidal chemistry, they will not be described further here and the reader should consult the literature for more information. [Pg.57]


See other pages where Particle capillary colloidal filtration is mentioned: [Pg.411]    [Pg.360]    [Pg.174]    [Pg.90]    [Pg.153]    [Pg.195]    [Pg.399]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Capillary colloidal filtration

Colloid filtration

Colloid particle

Particle colloidal filtration

Particle filtration

© 2024 chempedia.info