Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Partial differential equations overview

The present review is based mainly on our publications [33,35-39,49-53]. In Section II we give a detailed description of the general reduction routine for an arbitrary relativistically invariant systems of partial differential equations. The results of Section II are used in Section III to solve the problem of symmetry reduction of Yang-Mills equations (1) by subgroups of the Poincare group P 1,3) and to construct their exact (non-Abelian) solutions. In Section IV we review the techniques for nonclassical reductions of the STJ 2) Yang-Mills equations, which are based on their conditional symmetry. These techniques enable us to obtain the principally new classes of exact solutions of (1), which are not derivable within the framework of the standard symmetry reduction technique. In Section V we give an overview of the known invariant solutions of the Maxwell equations and construct multiparameter families of new ones. [Pg.274]

Mathematical models of flow processes are non-linear, coupled partial differential equations. Analytical solutions are possible only for some simple cases. For most flow processes which are of interest to a reactor engineer, the governing equations need to be solved numerically. A brief overview of basic steps involved in the numerical solution of model equations is given in Section 1.2. In this chapter, details of the numerical solution of model equations are discussed. [Pg.151]

The present chapter provides an overview of several numerical techniques that can be used to solve model equations of ordinary and partial differential type, both of which are frequently encountered in multiphase catalytic reactor analysis and design. Brief theories of the ordinary differential equation solution methods are provided. The techniques and software involved in the numerical solution of partial differential equation sets, which allow accurate prediction of nonreactive and reactive transport phenomena in conventional and nonconventional geometries, are explained briefly. The chapter is concluded with two case studies that demonstrate the application of numerical solution techniques in modeling and simulation of hydrocar-bon-to-hydrogen conversions in catalytic packed-bed and heat-exchange integrated microchannel reactors. [Pg.253]

The three chapters in this volume deal with various aspects of singular perturbations and their numerical solution. The first chapter is concerned with the analysis of some singular perturbation problems that arise in chemical kinetics. In it the matching method is applied to find asymptotic solutions of some dynamical systems of ordinary differential equations whose solutions have multiscale time dependence. The second chapter contains a comprehensive overview of the theory and application of asymptotic approximations for many different kinds of problems in chemical physics, with boundary and interior layers governed by either ordinary or partial differential equations. In the final chapter the numerical difficulties arising in the solution of the problems described in the previous chapters are discussed. In addition, rigorous criteria are proposed for... [Pg.380]


See other pages where Partial differential equations overview is mentioned: [Pg.146]    [Pg.653]    [Pg.568]    [Pg.647]    [Pg.663]    [Pg.611]    [Pg.122]    [Pg.72]    [Pg.772]   
See also in sourсe #XX -- [ Pg.113 , Pg.183 , Pg.184 , Pg.185 , Pg.186 , Pg.187 , Pg.188 , Pg.189 , Pg.190 ]




SEARCH



Differential equations partial

Partial differential

Partial equation

© 2024 chempedia.info