Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Palladium salts alkene addition reactions

Trialkylamines are used as additives in the telomerization of butadiene and water in a two-phase system (103). The catalyst comprises a palladium salt and tppms or tppts. The amines may build cationic surfactants under catalytic conditions and be capable of micelle formation. The products include up to five telomerization products (alcohols, alkenes, and ethers), and thus the reaction is nonselective. [Pg.492]

Palladium salts also promote the addition of nucleophiles to alkenes and alkynes. The Pd-catalyzed additions of nucleophiles to alkynes, which is useful for intramolecular cyclizations such as the isomerization of 2-alkynylphenols to benzofurans, proceeds by exactly the same mechanism as does the Hg-catalyzed reaction. However, the Pd-catalyzed additions of nucleophiles to alkenes takes the course of substitution rather than addition because alkylpalladium complexes are unstable toward /3-hydride elimination. The Pd-catalyzed nucleophilic substitutions of alkenes are discussed later in this chapter (Section 6.3.6). [Pg.296]

One of the most important transformations catalysed by palladium is the Heck reaction. Oxidative addition of palladium(O) into an unsaturated halide (or tri-flate), followed by reaction with an alkene, leads to overall substitution of a vinylic (or allylic) hydrogen atom with the unsaturated group. For example, formation of cinnamic acid derivatives from aromatic halides and acrylic acid or acrylate esters is possible (1.209). Unsaturated iodides react faster than the corresponding bromides and do not require a phosphine ligand. With an aryl bromide, the ligand tri-o-tolylphosphine is effective (1.210). The addition of a metal halide or tetra-alkylammonium halide can promote the Heck reaction. Acceleration of the coupling can also be achieved in the presence of silver(I) or thallium(I) salts, or by using electron-rich phosphines such as tri-tert-butylphosphine. ... [Pg.94]

The reaction of aryl and alkenyl halides (bromides and iodides) such as 79 with alkenes and alkynes, in the presence of a catalytic amount of a palladium salt, results in substitution of the halide by the alkenyl or alkynyl group, and is referred to as the Heck reaction [37,39]. The reaction is initiated by oxidative addition of the halide to a Pd(0) species to give 80, followed by alkene (or alkyne) insertion to give 81, which has a Pd-C bond, and cis Pd-H elimination to liberate the product 82 (Scheme 19). [Pg.66]

In [51], Wacker oxidation of olefins was studied in the presence of catalytic systems comprising water-soluble calixarenes (sulfonated and glycydylated derivatives), palladium salt, and copper salt. The presence of nonpolar cavities in these molecules enables binding nonpolar substrates and their transfer into the aqueous phase where the reaction takes place. The activity of these catalysts depends on the complementarity between the cavity size of the host molecule and the size of the guest molecule. Therefore, substrate selectivity was exhibited. For example, the addition of calixarene increased the reaction rate for linear 1-alkenes which size corresponded to the size of the calixarene cavity (1-hexene for calix[4]arene and 1-octene for calix[6]arene). The activity of catalytic system applied for the oxidation of substituted styrenes also depended on the ratio of the size of the substrate molecule and that of the calixarene cavity. [Pg.91]

On the other hand, there are only a few reports of catalytic nonpolymeric reactions that involve the intermolecular reaction of an alkene with an acylpalladium complex. The first example was reported in 1968 while studying the decarbonylation of acyl chlorides in the presence of various palladium salts. For example, phenylpropionyl chloride gave styrene (53%) along with l,5-diphenyl-l-penten-3-one (10%) in the presence of catalytic amounts of PdCl2. The latter compound was probably formed via reaction of the acylpalladium complex, generated via oxidative addition in the acyl-chloride bond, with styrene itself formed via decarbonylation of the acylpalladium complex followed by /S-elimina-tion (Scheme 2). [Pg.922]

The reaction starts with the oxidative addition of an aryl halide (Cl, Br or I) to palladium zero. The next step is the insertion of an alkene into the palladium carbon bond just formed. The third step is (3-hydride elimination giving the organic product and a palladium hydrido halide. The latter reductively eliminates HX, which reacts with base to give a salt (Figure 13.15). [Pg.281]

Alkynes may also be hydrogenated, initially to alkenes, and then further to alkanes. By suitable modification of the catalyst, it has proved possible to stop the reaction at the intermediate alkene. Typically, platinum or palladium catalysts partially deactivated (poisoned) with lead salts are fonnd to be suitable for reduction of alkynes to alkenes. Again, syn addition is observed. [Pg.333]

Normally, the most practical vinyl substitutions are achieved by use of the oxidative additions of organic bromides, iodides, diazonium salts or triflates to palladium(0)-phosphine complexes in situ. The organic halide, diazonium salt or triflate, an alkene, a base to neutralize the acid formed and a catalytic amount of a palladium(II) salt, usually in conjunction with a triarylphosphine, are the usual reactants at about 25-100 C. This method is useful for reactions of aryl, heterocyclic and vinyl derviatives. Acid chlorides also react, usually yielding decarbonylated products, although there are a few exceptions. Likewise, arylsulfonyl chlorides lose sulfur dioxide and form arylated alkenes. Aryl chlorides have been reacted successfully in a few instances but only with the most reactive alkenes and usually under more vigorous conditions. Benzyl iodide, bromide and chloride will benzylate alkenes but other alkyl halides generally do not alkylate alkenes by this procedure. [Pg.835]

The reaction sequence in the vinylation of aromatic halides and vinyl halides, i.e. the Heck reaction, is oxidative addition of the alkyl halide to a zerovalent palladium complex, then insertion of an alkene and completed by /3-hydride elimination and HX elimination. Initially though, C-H activation of a C-H alkene bond had also been taken into consideration. Although the Heck reaction reduces the formation of salt by-products by half compared with cross-coupling reactions, salts are still formed in stoichiometric amounts. Further reduction of salt production by a proper choice of aryl precursors has been reported (Chapter III.2.1) [1]. In these examples aromatic carboxylic anhydrides were used instead of halides and the co-produced acid can be recycled and one molecule of carbon monoxide is sacrificed. Catalytic activation of aromatic C-H bonds and subsequent insertion of alkenes leads to new C-C bond formation without production of halide salt byproducts, as shown in Scheme 1. When the hydroarylation reaction is performed with alkynes one obtains arylalkenes, the products of the Heck reaction, which now are synthesized without the co-production of salts. No reoxidation of the metal is required, because palladium(II) is regenerated. [Pg.203]

Palladium-catalyzed reaction of conjugated dienes in the presence of a halide anion can be controlled to give a l-acyloxy-4-halo-2-alkene selectively under appropriate reaction conditions. The catalyst for this system is a palladium(II) salt, usually Pd(OAc)2 or Li2PdCl4. The reaction may be intermolecular or intramolecular. In most cases, it is stereoselective and results in a 1,4-cis addition to the diene. The products obtained from such reactions are useful synthetic intermediates since they have two allylic leaving groups with a large difference in reactivity (see below, under Synthetic applications ). [Pg.194]


See other pages where Palladium salts alkene addition reactions is mentioned: [Pg.288]    [Pg.45]    [Pg.503]    [Pg.838]    [Pg.843]    [Pg.477]    [Pg.31]    [Pg.417]    [Pg.169]    [Pg.500]    [Pg.1184]    [Pg.1135]    [Pg.435]    [Pg.17]    [Pg.503]    [Pg.1301]    [Pg.371]    [Pg.373]    [Pg.1135]    [Pg.258]    [Pg.107]    [Pg.290]    [Pg.576]    [Pg.296]    [Pg.439]    [Pg.300]    [Pg.501]    [Pg.224]    [Pg.33]    [Pg.91]    [Pg.612]    [Pg.171]    [Pg.462]    [Pg.488]    [Pg.1321]    [Pg.330]    [Pg.433]    [Pg.439]    [Pg.327]   
See also in sourсe #XX -- [ Pg.551 ]




SEARCH



Addition reactions alkenes

Addition salts

Palladium alkenes

Palladium salt

Palladium®) addition reactions

Palladium®) salts alkenes

© 2024 chempedia.info