Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer units packed columns

To use all of these equations, the heights of the transfer units or the mass transfer coefficients and must be known. Transfer data for packed columns are often measured and reported direcdy in terms of and and correlated in this form against and... [Pg.26]

In 1966, in a paper that now is considered a classic, Danckwerts and Gillham [Tmns. Inst. Chem. Eng., 44, T42 (1966)] showed that data taken in a small stirred-ceU laboratoiy apparatus could be used in the design of a packed-tower absorber when chemical reactions are involved. They showed that if the packed-tower mass-transfer coefficient in the absence of reaction (/cf) can be reproduced in the laboratory unit, then the rate of absorption in the l oratoiy apparatus will respond to chemical reactions in the same way as in the packed column even though the means of agitating the hquid in the two systems might be quite different. [Pg.1366]

Mass Transfer Relationships for calculating rates of mass transfer between gas and liquid in packed absorbers, strippers, and distillation columns may be found in Sec. 5 and are summarized in Table, 5-28. The two-resistance approach is used, with rates expressed as transfer units ... [Pg.1398]

The dispersion of a solute band in a packed column was originally treated comprehensively by Van Deemter et al. [4] who postulated that there were four first-order effect, spreading processes that were responsible for peak dispersion. These the authors designated as multi-path dispersion, longitudinal diffusion, resistance to mass transfer in the mobile phase and resistance to mass transfer in the stationary phase. Van Deemter derived an expression for the variance contribution of each dispersion process to the overall variance per unit length of the column. Consequently, as the individual dispersion processes can be assumed to be random and non-interacting, the total variance per unit length of the column was obtained from a sum of the individual variance contributions. [Pg.245]

Now, it is of interest to determine if either the resistance to mass transfer term for the mobile phase or, the resistance to mass transfer term in the stationary phase dominate in the equation for the variance per unit length of a GC packed column. Consequently, taking the ratio of the two resistance to mass transfer terms (G)... [Pg.373]

A packed column is used in the desulfurization operation described in the previous problem. The overall height of transfer unit based on the gas phase is 0.7 m. WTien the flowrate of water is twice the minimum, what height of packing is needed ... [Pg.38]

Water is to be cooled in a small packed column from 330 to 285 K by means of air flowing countercurrently. The rate of flow of liquid is 1400 cm3/m2 s and the flow rate of the air, which enters at a temperature of 295 K and a humidity of 60%, is 3.0 m3/m2 s. Calculate the required height of tower if the whole of the resistance to heat and mass transfer may be considered as being in the gas phase and the product of the mass transfer coefficient and the transfer surface per unit volume of column is 2 s-1. [Pg.867]

For a packed column the chart by Colburn (1939) can be used (see Volume 2, Chapter 11). This gives the ratio of the inlet and outlet concentrations, yi/yt, in terms of the number of transfer units and niGm/Lm. [Pg.186]

Mass transfer in packed columns is a continuous, differential, process, so the transfer unit method should be used to determine the column height, as used in absorption see Section 11.14.2. However, it often convenient to treat them as staged processes and use the HETS for the packing employed. For random packings the HETS will, typically, range from 0.5 to 1.5 m, depending on the type and size of packing used. [Pg.623]

For packed column separations using Pall rings, the height of a transfer unit (HTU) may be estimated as follows ... [Pg.115]

Nuclides, reaction with monomers, 14 248 NuDat database, 21 314 Nukiyama-Tanasawa function, 23 185 Null-background techniques, in infrared spectroscopy, 23 139-140 Number-average molecular weight, 20 101 of polymers, 11 195, 196 Number density, of droplets, 23 187 Number of gas-phase transfer units (Nq), packed column absorbers, 1 51 Number of overall gas-phase transfer units (Nog), packed column absorbers, 1 52 Number of transfer units (Nt, NTU), 10 761... [Pg.638]

Outside vapor deposition (OVD), in fiber optic fabrication, 11 140, 141 Outsourcing, of maintenance, 15 478 Ovalbumin, properties of standard, 3 836t Overaged precipitation, 13 502 Overall gas-phase height of a transfer unit (Hog), packed column absorbers, 1 52... [Pg.659]

The concept of a transfer unit for a countercurrent mass transfer process, introduced in Volume 1, is developed further for distillation in packed columns in Section 11.11. The number of transfer units is defined as the integrated value of the ratio of the change in composition to the driving force. Thus, considering the vapour phase, the number of overall gas transfer, units Nog is given by ... [Pg.635]

Once the number of transfer units has been found, the height of the tower is determined from the product of the number and the height of each transfer unit (HTU). The HTU is determined by physical parameters such as the droplet size, the flow patterns in the tower, and the effect of any packing. These all affect the rate of mass transfer, which is addressed in Chapter 9. Very often the rate of mass transfer cannot be estimated from first principles, and it is necessary to estimate the height by determining the number of transfer units achieved and then dividing the actual height of the column employed by the number of transfer units, i.e. ... [Pg.365]

The mass transfer coefficients considered so far - namely, kQ,kj, KQ,andKj - are defined with respect to known interfacial areas. However, the interfacial areas in equipment such as the packed column and bubble column are indefinite, and vary with operating conditions such as fluid velocities. It is for this reason that the volumetric coefficients defined with respect to the unit volume of the equipment are used, or more strictly, the unit packed volume in the packed column or the unit volume of liquid containing bubbles in the bubble column. Corresponding to /cg, Kq, and we define k a, k, a, K, /i, and K a, all of which have units of (kmol h m )/(kmol m ) - that is, (h ). Although the volumetric coefficients are often regarded as single coefficients, it is more reasonable to consider a separately from the Ar-terms, because the effective interfacial area per unit packed volume or unit volume of liquid-gas mixture a (m m ) varies not only with operating conditions such as fluid velocities but also with the types of operation, such as physical absorption, chemical absorption, and vaporization. [Pg.88]

Now, we consider gas-liquid mass transfer rates in gas absorption and its reverse operation - that is, gas desorption in packed columns. The gas entering the column from the bottom and the liquid entering from the top exchange solute while contacting each other. In case of absorption, the amount of solute transferred from the gas to the liquid per unit sectional area of the column is... [Pg.88]

With regards to handling data on industrial apparatus for gas-liquid mass transfer (such as packed columns, bubble columns, and stirred tanks), it is more practical to use volumetric mass transfer coefficients, such as KqU and K a, because the interfacial area a cannot be well defined and will vary with operating conditions. As noted in Section 6.7.2, the volumetric mass transfer coefficients for packed columns are defined with respect to the packed volume - that is, the sum of the volumes of gas, liquid, and packings. In contrast, volumetric mass transfer coefficients, which involve the specific gas-liquid interfacial area a (L L 5), for liquid-gas bubble systems (such as gassed stirred tanks and bubble columns) are defined with respect to the unit volume of gas-liquid mixture or of clear liquid volume, excluding the gas bubbles. In this book, we shall use a for the specific interfacial area with respect to the clear liquid volume, and a for the specific interfacial area with respect to the total volume of gas-liquid mixture. [Pg.108]


See other pages where Transfer units packed columns is mentioned: [Pg.34]    [Pg.74]    [Pg.58]    [Pg.173]    [Pg.1424]    [Pg.2185]    [Pg.257]    [Pg.284]    [Pg.357]    [Pg.328]    [Pg.694]    [Pg.301]    [Pg.268]    [Pg.110]    [Pg.556]    [Pg.818]    [Pg.599]    [Pg.157]    [Pg.251]    [Pg.325]    [Pg.425]    [Pg.90]    [Pg.218]    [Pg.740]    [Pg.500]    [Pg.395]    [Pg.205]    [Pg.58]    [Pg.107]    [Pg.328]    [Pg.62]   
See also in sourсe #XX -- [ Pg.353 ]




SEARCH



Packed columns

Packed columns, packing

Packing units

© 2024 chempedia.info