Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative phosphorylation enzyme regulation

The first is cell injury (cytotoxicity), which can be severe enough to result in cell death. There are many mechanisms by which xenobiotics injure cells. The one considered here is covalent binding to cell macromol-ecules of reactive species of xenobiotics produced by metabolism. These macromolecular targets include DNA, RNA, and protein. If the macromolecule to which the reactive xenobiotic binds is essential for short-term cell survival, eg, a protein or enzyme involved in some critical cellular function such as oxidative phosphorylation or regulation of the permeability of the plasma membrane, then severe effects on cellular function could become evident quite rapidly. [Pg.631]

One enzyme regulated by AMPK is acetyl-CoA carboxylase, which produces malonyl-CoA, the first intermediate committed to fatty acid synthesis. Malonyl-CoA is a powerful inhibitor of the enzyme carnitine acyl-transferase I, which starts the process of ]3 oxidation by transporting fatty acids into the mitochondrion (see Fig. 17-6). By phosphorylating and inactivating acetyl-CoA carboxylase, AMPK inhibits fatty acid synthesis while relieving the inhibition (by malonyl-CoA) of )3 oxidation (Fig. 23-37). [Pg.914]

The oxidative phosphorylation system contains over 80 polypeptides. Only 13 of them are encoded by mtDNA, which is contained within mitochondria, and all the other proteins that reside in the mitochondrion are nuclear gene products. Mitochondria depend on nuclear genes for the synthesis and assembly of the enzymes for mtDNA replication, transcription, translation, and repair (Tl). The proteins involved in heme synthesis, substrate oxidation by TCA cycle, degradation of fatty acids by /i-oxidalion, part of the urea cycle, and regulation of apoptosis that occurs in mitochondria are all made by the genes in nuclear DNA. [Pg.86]

Figure 7-2. Reactions of the pyruvate dehydrogenase (PDU) multienzyme complex (PDC). Pyruvate is decarboxylated by the PDH subunit (I ,) in the presence of thiamine pyrophosphate (TPP). The resulting hydroxyethyl-TPP complex reacts with oxidized lipoamide (LipS3), the prosthetic group of dehydrolipoamide transacetylase (Ii2), to form acetyl lipoamide. In turn, this intermediate reacts with coenzyme A (CoASH) to yield acetyl-CoA and reduced lipoamide [Lip(SH)2]. The cycle of reaction is completed when reduced lipoamide is reoxidized by the flavoprotein, dehydrolipoamide dehydrogenase (E3). Finally, the reduced flavoprotein is oxidized by NAD+ and transfers reducing equivalents to the respiratory chain via reduced NADH. PDC is regulated in part by reversible phosphorylation, in which the phosphorylated enzyme is inactive. Increases in the in-tramitochondrial ratios of NADH/NAD+ and acetyl-CoA/CoASH also stimulate kinase-mediated phosphorylation of PDC. The drug dichloroacetate (DCA) inhibits the kinase responsible for phosphorylating PDC, thus locking the enzyme in its unphosphory-lated, catalytically active state. Reprinted with permission from Stacpoole et al. (2003). Figure 7-2. Reactions of the pyruvate dehydrogenase (PDU) multienzyme complex (PDC). Pyruvate is decarboxylated by the PDH subunit (I ,) in the presence of thiamine pyrophosphate (TPP). The resulting hydroxyethyl-TPP complex reacts with oxidized lipoamide (LipS3), the prosthetic group of dehydrolipoamide transacetylase (Ii2), to form acetyl lipoamide. In turn, this intermediate reacts with coenzyme A (CoASH) to yield acetyl-CoA and reduced lipoamide [Lip(SH)2]. The cycle of reaction is completed when reduced lipoamide is reoxidized by the flavoprotein, dehydrolipoamide dehydrogenase (E3). Finally, the reduced flavoprotein is oxidized by NAD+ and transfers reducing equivalents to the respiratory chain via reduced NADH. PDC is regulated in part by reversible phosphorylation, in which the phosphorylated enzyme is inactive. Increases in the in-tramitochondrial ratios of NADH/NAD+ and acetyl-CoA/CoASH also stimulate kinase-mediated phosphorylation of PDC. The drug dichloroacetate (DCA) inhibits the kinase responsible for phosphorylating PDC, thus locking the enzyme in its unphosphory-lated, catalytically active state. Reprinted with permission from Stacpoole et al. (2003).
Gain ratio 17 r can be calculated at a reference force ratio, such as xopt, which is a natural steady-state force ratio of oxidative phosphorylation. This is seen as a result of the adaptation of oxidative phosphorylation to various metabolic conditions and also as a result of the thermodynamic buffering of reactions catalyzed by enzymes. The experimentally observed linearity of several energy converters operating far from equilibrium may be due to enzymatic feedback regulations with an evolutionary drive towards higher efficiency. [Pg.588]

Membrane proteins carry out a wide range of critical functions in cells, and they include passive and active transporters, ion chamiels, many classes of receptors, cellular toxins, proteins involved in membrane trafficking, and the enzymes that facilitate electron transport and oxidative phosphorylation. For example, the voltage-gated ion channels that facilitate the passive diffusion of sodium and potassium across the axonal membrane are responsible for the formation of an action potential. Active transport proteins establish ion gradients and are necessary for the uptake of nutrients into cells. Soluble hormones bind to membrane receptors, which then regulate the internal biochemistry of the cell. [Pg.994]

The TCA cycle occurs in the mitochondrion, where its flux is tightly coordinated with the rate of the electron transport chain and oxidative phosphorylation through feedback regulation that reflects the demand for ATP. The rate of the TCA cycle is increased when ATP utilization in the cell is increased through the response of several enzymes to ADP levels, the NADH/ NAD ratio, the rate of FAD(2H) oxidation or the Ccf concentration. For example, isocitrate dehydrogenase is allosterically activated by ADP. [Pg.361]


See other pages where Oxidative phosphorylation enzyme regulation is mentioned: [Pg.651]    [Pg.736]    [Pg.286]    [Pg.539]    [Pg.539]    [Pg.238]    [Pg.178]    [Pg.718]    [Pg.159]    [Pg.89]    [Pg.481]    [Pg.206]    [Pg.208]    [Pg.43]    [Pg.130]    [Pg.290]    [Pg.41]    [Pg.550]    [Pg.574]    [Pg.642]    [Pg.1117]    [Pg.17]    [Pg.263]    [Pg.262]    [Pg.53]    [Pg.295]    [Pg.372]    [Pg.619]    [Pg.718]    [Pg.937]    [Pg.443]    [Pg.371]    [Pg.381]    [Pg.518]    [Pg.329]    [Pg.360]    [Pg.160]    [Pg.260]    [Pg.495]    [Pg.516]    [Pg.367]   
See also in sourсe #XX -- [ Pg.342 , Pg.343 ]




SEARCH



3 oxidation regulation

Enzyme oxidation

Enzyme phosphorylation

Enzymes oxidizing

Enzymes regulation

Enzymes regulators

Enzymic phosphorylation

Oxidative enzymes

Oxidative phosphorylation

Phosphorylation enzyme regulation

Phosphorylation regulation

Regulable enzymes

© 2024 chempedia.info