Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative phosphorylation and

Aminophenol is a selective nephrotoxic agent and intermpts proximal tubular function (121,122). Disagreement exists concerning the nephrotoxity of the other isomers although they are not as potent as 4-aminophenol (123,124). Respiration, oxidative phosphorylation, and ATPase activity are inhibited in rat kidney mitochondria (125). The aminophenols and their derivatives are inhibitors of 5-Hpoxygenase (126) and prostaglandin synthetase... [Pg.312]

Glycolysis and the citric acid cycle (to be discussed in Chapter 20) are coupled via phosphofructokinase, because citrate, an intermediate in the citric acid cycle, is an allosteric inhibitor of phosphofructokinase. When the citric acid cycle reaches saturation, glycolysis (which feeds the citric acid cycle under aerobic conditions) slows down. The citric acid cycle directs electrons into the electron transport chain (for the purpose of ATP synthesis in oxidative phosphorylation) and also provides precursor molecules for biosynthetic pathways. Inhibition of glycolysis by citrate ensures that glucose will not be committed to these activities if the citric acid cycle is already saturated. [Pg.619]

Senior, A.E. Shenatt, H.S.A. (1968). Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycemic fatty acids. Oxidative phosphorylation and mitochondrial oxidation of pyruvate, 3-hydroxybutyrate and tricarboxylic acid-cycle intermediates. Biochem. J. 110,499-509. [Pg.153]

Clofibrate causes a necrotizing myopathy, particularly in patients with renal failure, nephrotic syndrome or hypothyroidism. The myopathy is painful and myokymia of unknown origin is sometimes present. The mechanism of damage is not known, but p-chlorophenol is a major metabolite of clofibrate and p-chlorophe-nol is a particularly potent uncoupler of cellular oxidative phosphorylation and disrupts the fluidity of lipid membranes. Muscle damage is repaired rapidly on the cessation of treatment. [Pg.344]

In addition to the foregoing, three further examples in this list (numbers 5-7) deserve consideration. These are (5) interaction of endocrine disrupters with the estrogen receptor, (6) the action of uncouplers of oxidative phosphorylation, and (7) mechanisms of oxidative stress. Until now only the first is well represented by biomarker assays that have been employed in ecotoxicology. [Pg.246]

Much information about the respiratory chain has been obtained by the use of inhibitors, and, conversely, this has provided knowledge about the mechanism of action of several poisons (Figure 12-7). They may be classified as inhibitors of the respiratory chain, inhibitors of oxidative phosphorylation, and uncouplers of oxidative phosphorylation. [Pg.95]

Figure 16-2. The citric acid cycle the major catabolic pathway for acetyl-CoA in aerobic organisms. Acetyl-CoA, the product of carbohydrate, protein, and lipid catabolism, is taken into the cycle, together with HjO, and oxidized to CO2 with the release of reducing equivalents (2H). Subsequent oxidation of 2H in the respiratory chain leads to coupled phosphorylation of ADP to ATP. For one turn of the cycle, 11 are generated via oxidative phosphorylation and one arises at substrate level from the conversion of succinyl-CoA to succinate. Figure 16-2. The citric acid cycle the major catabolic pathway for acetyl-CoA in aerobic organisms. Acetyl-CoA, the product of carbohydrate, protein, and lipid catabolism, is taken into the cycle, together with HjO, and oxidized to CO2 with the release of reducing equivalents (2H). Subsequent oxidation of 2H in the respiratory chain leads to coupled phosphorylation of ADP to ATP. For one turn of the cycle, 11 are generated via oxidative phosphorylation and one arises at substrate level from the conversion of succinyl-CoA to succinate.
This potential, or protonmotive force as it is also called, in turn drives a number of energy-requiring functions which include the synthesis of ATP, the coupling of oxidative processes to phosphorylation, a metabohc sequence called oxidative phosphorylation and the transport and concentration in the cell of metabolites such as sugars and amino acids. This, in a few simple words, is the basis of the chemiosmotic theory linking metabolism to energy-requiring processes. [Pg.257]

Explain how creatine phosphate, oxidative phosphorylation, and glycolysis provide energy for skeletal muscle contraction... [Pg.139]

Niclosamide inhibits oxidative phosphorylation and stimulates adenosine tripho-sphatese activity in the mitochondria of cestodes, killing the scolex and proximal segments of the tapeworm both in vitro and in vivo. The scolex of the tapeworm, then loosened from the gut wall, may be digested in the intestine and thus may not be identified in the stool even after extensive purging [90,91], Niclosamide is not appreciably absorbed from the gastrointestinal tract [92,93] and the side effects have primarily been limited to gastrointestinal symptoms. [Pg.93]

Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase). Fig. 6.9 The catalysts for denitrification. Nitrate is reduced by a molybdenum enzyme while nitrite and oxides of nitrogen are reduced today mainly by copper enzymes. However, there are alternatives, probably earlier iron enzymes. The electron transfer bct complex is common to that in oxidative phosphorylation and similar to the bf complex of photosynthesis, while cytochrome c2 is to be compared with cytochrome c of oxidative phosphorylation. These four processes are linked in energy capture via proton (H+) gradients see Figure 6.8(a) and (b) and the lower parts of Fig. 6.9 which show separately the active site of the all iron NO-reductase, and the active site of cytochrome oxidase (02 reductase).
Mitochondria are the centers for oxidative phosphorylation and the respiratory centers of all cells. While usually aerobic, some mitochondria (e.g. in some bacteria), are known that function anaerobically. These organelles occur ubiquitously in the neuron and its processes (Figs 1-4, 1-6). Their overall shape may change from one type of neuron to another but their basic morphology is identical to that in other cell types. Mitochondria consist morphologically of double-membraned sacs surrounded by protuberances, or cristae, extending from the inner membrane into the matrix space [7]. [Pg.8]

Boyer PD, Chance B, Ernester L, et al. 1977. Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem 46 955-1026. [Pg.239]

The importance of the availability of purified mitochondria for Lehninger s early studies of oxidative phosphorylation, and in the... [Pg.150]

Liberman EA, Topaly VP, Tsofina LM, Jasaitis AA, Skulachev VP. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 1969 222(198) 1076-1078. [Pg.336]

The rates of oxidative phosphorylation and the citric acid cycle are closely coordinated, and are dependent mainly on the availability of and ADR If is limited, the rate of oxidative phosphorylation decreases, and the concentrations of NADH and FADH increase. The accumulation of NADH, in turn, inhibits the citric acid cycle. The coordinated regulation of these pathways is known as respiratory control. ... [Pg.186]

Rapoport, S.I. (2003) Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease. Neurotox. Res., 5, 385-398. [Pg.336]

In the preceding sections the conversion of purines and purine nucleosides to purine nucleoside monophosphates has been discussed. The monophosphates of adenosine and guanosine must be converted to their di- and triphosphates for polymerization to RNA, for reduction to 2 -deoxyribonucleoside diphosphates, and for the many other reactions in which they take part. Adenosine triphosphate is produced by oxidative phosphorylation and by transfer of phosphate from 1,3-diphosphoglycerate and phosphopyruvate to adenosine diphosphate. A series of transphosphorylations distributes phosphate from adenosine triphosphate to all of the other nucleotides. Two classes of enzymes, termed nucleoside mono-phosphokinases and nucleoside diphosphokinases, catalyse the formation of the nucleoside di- and triphosphates by the transfer of the terminal phosphoryl group from adenosine triphosphate. Muscle adenylate kinase (myokinase)... [Pg.80]

In isocitrate, there is a CHOH group that is available for oxidation via the coenzyme NAD+ and the enzyme isocitrate dehydrogenase. NADH will then be reoxidized via oxidative phosphorylation, and lead to ATP synthesis. The oxidation product from isocitrate is oxalosuccinate, a -ketoacid that easily... [Pg.586]


See other pages where Oxidative phosphorylation and is mentioned: [Pg.480]    [Pg.46]    [Pg.65]    [Pg.1148]    [Pg.130]    [Pg.139]    [Pg.427]    [Pg.108]    [Pg.421]    [Pg.152]    [Pg.92]    [Pg.286]    [Pg.569]    [Pg.698]    [Pg.93]    [Pg.210]    [Pg.121]    [Pg.305]    [Pg.906]    [Pg.242]    [Pg.616]    [Pg.1205]    [Pg.47]    [Pg.166]    [Pg.246]    [Pg.276]    [Pg.299]    [Pg.147]    [Pg.295]    [Pg.577]    [Pg.591]   


SEARCH



Acid Cycle and Oxidative Phosphorylation

Aerobic respiration and oxidative phosphorylation

Electron Transport, Oxidative Phosphorylation, and Hydroxylation

Electron transport chain and oxidative phosphorylation

Mitochondria and oxidative phosphorylation

Mitochondrial electron transport and oxidative phosphorylation

Oxidation, and phosphorylation

Oxidative phosphorylation

Oxidative phosphorylation and the electron transport chain

Oxidative phosphorylation assay and

The TCA Cycle and Oxidative Phosphorylation

© 2024 chempedia.info