Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative activation catalytic cycle

Figure 3 shows a proposed catalytic mechanism for [NiFe]-hydrogenases. For hydrogen oxidation, the catalytic cycle starts at the Ni-SU state, a Ni(II) state with no bridging ligand. Hydrogen binds the active site and is heteroly tic ally cleaved to produce the Ni-R state, a Ni(II) species with a bridging hydride and likely a... [Pg.238]

N—Fe(IV)Por complexes. Oxo iron(IV) porphyrin cation radical complexes, [O—Fe(IV)Por ], are important intermediates in oxygen atom transfer reactions. Compound I of the enzymes catalase and peroxidase have this formulation, as does the active intermediate in the catalytic cycle of cytochrome P Q. Similar intermediates are invoked in the extensively investigated hydroxylations and epoxidations of hydrocarbon substrates cataly2ed by iron porphyrins in the presence of such oxidizing agents as iodosylbenzene, NaOCl, peroxides, and air. [Pg.442]

One of the most used systems involves use of horseradish peroxidase, a 3-diketone (mosl commonly 2,4-pentandione), and hydrogen peroxide." " " Since these enzymes contain iron(II), initiation may involve decomposition of hydrogen peroxide by a redox reaction with formation of hydroxy radicals. However, the proposed initiation mechanism- involves a catalytic cycle with enzyme activation by hydrogen peroxide and oxidation of the [3-diketone to give a species which initiates polymerization. Some influence of the enzyme on tacticity and molecular... [Pg.440]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

The general catalytic cycle for the coupling of aryl-alkenyl halides with alkenes is shown in Fig. 9.6. The first step in this catalytic cycle is the oxidative addition of aryl-alkenyl halides to Pd(0). The activity of the aryl-alkenyl halides still follows the order RI > ROTf > RBr > RC1. The olefin coordinates to the Pd(II) species. The coordinated olefin inserts into Pd—R bond in a syn fashion, p-Hydrogen elimination can occur only after an internal rotation around the former double bond, as it requires at least one /I-hydrogen to be oriented syn perpendicular with respect to the halopalladium residue. The subsequent syn elimination yields an alkene and a hydridopalladium halide. This process is, however, reversible, and therefore, the thermodynamically more stable (E)-alkene is generally obtained. Reductive elimination of HX from the hydridopalladium halide in the presence of a base regenerates the catalytically active Pd(0), which can reenter the catalytic cycle. The oxidative addition has frequently assumed to be the rate-determining step. [Pg.486]

Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism. Figure 2. Mechanism of PDH. The three different subunits of the PDH complex in the mitochondrial matrix (E, pyruvate decarboxylase E2, dihydrolipoamide acyltrans-ferase Ej, dihydrolipoamide dehydrogenase) catalyze the oxidative decarboxylation of pyruvate to acetyl-CoA and CO2. E, decarboxylates pyruvate and transfers the acetyl-group to lipoamide. Lipoamide is linked to the group of a lysine residue to E2 to form a flexible chain which rotates between the active sites of E, E2, and E3. E2 then transfers the acetyl-group from lipoamide to CoASH leaving the lipoamide in the reduced form. This in turn is oxidized by E3, which is an NAD-dependent (low potential) flavoprotein, completing the catalytic cycle. PDH activity is controlled in two ways by product inhibition by NADH and acetyl-CoA formed from pyruvate (or by P-oxidation), and by inactivation by phosphorylation of Ej by a specific ATP-de-pendent protein kinase associated with the complex, or activation by dephosphorylation by a specific phosphoprotein phosphatase. The phosphatase is activated by increases in the concentration of Ca in the matrix. The combination of insulin with its cell surface receptor activates PDH by activating the phosphatase by an unknown mechanism.
Other metals can also be used as a catalytic species. For example, Feringa and coworkers <96TET3521> have reported on the epoxidation of unfunctionalized alkenes using dinuclear nickel(II) catalysts (i.e., 16). These slightly distorted square planar complexes show activity in biphasic systems with either sodium hypochlorite or t-butyl hydroperoxide as a terminal oxidant. No enantioselectivity is observed under these conditions, supporting the idea that radical processes are operative. In the case of hypochlorite, Feringa proposed the intermediacy of hypochlorite radical as the active species, which is generated in a catalytic cycle (Scheme 1). [Pg.45]

The proposed catalytic cycle, which is based on experimental data, is shown in Scheme 6. Loss of 2 equiv. of N2 from 5 (or alternatively 1 equiv. of N2 or 1 equiv. of H2 from complexes shown in Scheme 3) affords the active species a. Olefin coordination giving b is considered to be preferred over oxidative addition of H2. Then, oxidative addition of H2 to b provides the olefin dihydride intermediate c. Olefin insertion giving d and subsequent alkane reductive elimination yields the saturated product and regenerates the catalytically active species a. [Pg.34]

The proposed catalytic cycle is shown in Scheme 31. Hence, FeCl2 is reduced by magnesium and subsequently coordinates both to the 1,3-diene and a-olefin (I III). The oxidative coupling of the coordinated 1,3-diene and a-olefin yields the allyl alkyl iron(II) complex IV. Subsequently, the 7i-a rearrangement takes place (IV V). The syn-p-hydride elimination (Hz) gives the hydride complex VI from which the C-Hz bond in the 1,4-addition product is formed via reductive elimination with regeneration of the active species II to complete the catalytic cycle. Deuteration experiments support this mechanistic scenario (Scheme 32). [Pg.53]

Partial oxidations over complex mixed metal oxides are far from ideal for singlecrystal like studies of catalyst structure and reaction mechanisms, although several detailed (and by no means unreasonable) catalytic cycles have been postulated. Successful catalysts are believed to have surfaces that react selectively vith adsorbed organic reactants at positions where oxygen of only limited reactivity is present. This results in the desired partially oxidized products and a reduced catalytic site, exposing oxygen deficiencies. Such sites are reoxidized by oxygen from the bulk that is supplied by gas-phase O2 activated at remote sites. [Pg.374]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

The oxidation state of the metal is of the utmost importance since no conversion is observed with complexes in a different oxidation state. CatalyticaUy active species are electron-rich d or d complexes. A general catalytic cycle has been proposed on the basis of deuterium-labeling experiments (Scheme 4-14) [280]. It is beUeved to occur for aU the catalysts used. [Pg.123]

Allyl carbonate esters are also useful hydroxy-protecting groups and are introduced using allyl chloroformate. A number of Pd-based catalysts for allylic deprotection have been developed.209 They are based on a catalytic cycle in which Pd° reacts by oxidative addition and activates the allylic bond to nucleophilic substitution. Various nucleophiles are effective, including dimedone,210 pentane-2,4-dione,211 and amines.212... [Pg.266]

Oxidations Using Oxoammonium Ions. Another oxidation procedure uses an oxoammonium ion, usually derived from the stable nitroxide tetramethylpiperidine nitroxide, TEMPO, as the active reagent.31 It is regenerated in a catalytic cycle using hypochlorite ion32 or NCS33 as the stoichiometric oxidant. These reactions involve an intermediate adduct of the alcohol and the oxoammonium ion. [Pg.1074]

If the two Oads species are not scavenged, then the reaction will stop. This is the case, for instance, of NO decomposition on Cu/ZSM-5 [25], Adsorbed oxygen species have to be scavenged either by an activated form of the initial HC reductant, such as QH O , (alcohol, aldehyde, etc.) or by the initial HC if their total oxidation is simultaneous with NO decomposition-reduction to N2. These oxygenates and/or HC suffer a total oxidation to C0/C02 and H20, regenerating the active site this is the principle of catalysis. Once the active site is recovered, the reaction continues to turn over. This is the catalytic cycle . [Pg.150]

It is concluded that the occupation of the step and kink sites plays a crucial role in the promotion of the Pt catalyst. The cyclic voltammetry results can be used to explain the conversion trends observed in Figure 2. For unpromoted 5%Pt/C the Pt step and kink sites are unoccupied and available for adsorption of reactant and oxidant species. During reaction these sites facilitate premature catalyst deactivation due to poisoning by strongly adsorbed by-products (5) and (or) the formation of a surface oxide layer (6). The 5%Pt,0.5%Bi/C catalyst has a portion of these Pt step and kink sites occupied and the result is a partial reduction in the catalyst deactivation and a consequent increase in alcohol conversion. As the Bi level is increased to lwt.% almost all of the Pt step and kink sites are occupied and the result is a catalyst with high activity. As more Bi is introduced onto the catalyst surface a bulk Bi phase is formed. Since the catalyst activity is maintained it is speculated that the bulk Bi phase is not involved in the catalytic cycle. [Pg.418]

It is well known that Rh(I) complexes can catalyze the carbonylation of methanol. A heterogenized catalyst was prepared by ion exchange of zeolite X or Y with Rh cations.126 The same catalytic cycle takes place in zeolites and in solution because the activation energy is nearly the same. The specific activity in zeolites, however, is less by an order of magnitude, suggesting that the Rh sites in the zeolite are not uniformly accessible. The oxidation of camphene was performed over zeolites exchanged with different metals (Mn, Co, Cu, Ni, and Zn).127 Cu-loaded zeolites have attracted considerable attention because of their unique properties applied in catalytic redox reactions.128-130 Four different Cu sites with defined coordinations have been found.131 It was found that the zeolitic media affects strongly the catalytic activity of the Cd2+ ion sites in Cd zeolites used to catalyze the hydration of acetylene.132... [Pg.257]


See other pages where Oxidative activation catalytic cycle is mentioned: [Pg.8]    [Pg.225]    [Pg.86]    [Pg.20]    [Pg.188]    [Pg.567]    [Pg.584]    [Pg.81]    [Pg.298]    [Pg.386]    [Pg.395]    [Pg.110]    [Pg.397]    [Pg.57]    [Pg.125]    [Pg.159]    [Pg.26]    [Pg.26]    [Pg.74]    [Pg.238]    [Pg.90]    [Pg.91]    [Pg.109]    [Pg.103]    [Pg.134]    [Pg.177]    [Pg.202]    [Pg.257]    [Pg.180]    [Pg.72]    [Pg.107]    [Pg.165]    [Pg.67]    [Pg.79]   
See also in sourсe #XX -- [ Pg.182 ]




SEARCH



Activated oxidation

Activation oxidation

Active cycling

Active oxides

Activity oxidation

Catalytic cycle

Oxidative activation

Oxides activated

Oxidizing activators

© 2024 chempedia.info