Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation-reduction exchange

Most homogenous chemical reactions in water may be presented as a resxilt of three basic processes oxidation-reduction (exchange of electrons). [Pg.107]

Although this enzyme is becoming better known, a question still remains unanswered what is the real role of NAD+ in the oxidation-reduction exchange The indispensable coenzyme of the reaction is not involved, at least in a conventional manner. [Pg.146]

In the pyroaurite structure the brucite layers are cationic. However, on oxidation the resultant brucite layers in y - NiOOH are anionic. To preserve electroneutrality, cations and anions are exchanged in the intercalated layer during the oxidation-reduction process. This is illustrated in Fig. 4. In the case of Mn-substituted materials, some Mn can be reduced to Mn(II). This neutralizes the charge in the brucite layer this part of the structure reverts to the P - Ni(OH)2 structure and the intercalated water and anions are expelled from the lattice. With this there is a concomitant irreversible contraction of the interlayer spacing from 7.80 to 4.65A [72]. [Pg.145]

A discussion of ligand exchange reactions of organometallic compounds associated with oxidation-reduction processes leading to free-radical formation will be found in Volume 14 (Free-radical polymerization). [Pg.3]

There are also examples of induced complex formation, an essential step of which is always an oxidation-reduction reaction. Rich and Taube found that the rate of exchange between PtCl and Cl was considerably increased by addition of cerium(rV). In the presence of this oxidizing agent a labile complex of Pt(III) is formed, the chloride of which is easily exchangeable. Exchange of platinum between PtCl and PtClg is similarly rapid via the intermediate labile PtCIs complex formed by cerium(IV). [Pg.511]

It reacts violently in halogen-exchange and oxidation-reduction reactions. Phosphorus trichloride... [Pg.1477]

Throughout this book a major stress is on catalysis in organisms. Catalysis is confined to non-metals and metal ions of attacking power, either as Lewis acids or in oxidation/reduction and this excludes the simplest ions such as Na+, K+ and Ca2+ (and Cl- among anions). The transition metal ions and zinc are the most available powerful catalysts. The metals in a transition series are known to have selective binding properties, exchange rates and oxidation/reduction states, which can be put to use in catalysis in quite different ways (Table 2.13). It is noticeable that especially the complexes of metal elements... [Pg.72]

The induction of steric effects by the pore walls was first demonstrated with heterogeneous catalysts, prepared from metal carbonyl clusters such as Rh6(CO)16, Ru3(CO)12, or Ir4(CO)12, which were synthesized in situ after a cation exchange process under CO in the large pores of zeolites such as HY, NaY, or 13X.25,26 The zeolite-entrapped carbonyl clusters are stable towards oxidation-reduction cycles this is in sharp contrast to the behavior of the same clusters supported on non-porous inorganic oxides. At high temperatures these metal carbonyl clusters aggregate to small metal particles, whose size is restricted by the dimensions of the zeolitic framework. Moreover, for a number of reactions, the size of the pores controls the size of the products formed thus a higher selectivity to the lower hydrocarbons has been reported for the Fischer Tropsch reaction. [Pg.448]

Oxidation—reduction reactions, commonly called redox reactions, are an extremely important category of reaction. Redox reactions include combustion, corrosion, respiration, photosynthesis, and the reactions involved in electrochemical cells (batteries). The driving force involved in redox reactions is the exchange of electrons from a more active species to a less active one. You can predict the relative activities from a table of activities or a halfreaction table. Chapter 16 goes into depth about electrochemistry and redox reactions. [Pg.71]

The mechanism of the reaction depicted in Scheme 4.6 differs from the Sf.,1 or Sf.,2 mechanism in that it involves the stage of one-electron oxidation-reduction. The impetus of this stage may be the easy detachment of the bromine anion followed by the formation of fluorenyl radical. The latter is unsaturated at position 9 near three benzene rings that stabilize the radical center. The radical formed is intercepted by the phenylthiolate ion. This leads to the anion-radical of the substitution product. Further electron exchange produces the substrate anion-radical and final product in its neutral state. The reaction consists of radical (R)-nucleophilic (N) monomolecular (1) substitution (S), with the combined symbol Sj j l. Reactions of Sj j l type can have both branch-chain and nonchain characters. [Pg.210]

This problem has two aspects—consumption of spin traps in one-electron oxidation/reduction either of a free radical or an initial ion-radical. An electron exchange between a trap and radical depends on a relative rate of the exchange as compared to rates of the addition reactions considered. An electron exchange between a trap and an ion-radical is represented by the following sequence (Nu is a nucleophile) ... [Pg.230]

Kinetic system, wherein the pathways along the system are moving toward some state of local equilibrium, which in tnm determines the rate of change along the pathway. In the context of a kinetic approach, which is relevant to geochemical processes, dissolntion-precipitation, exchange-adsorption, oxidation-reduction, vaporization, and formation of new phases, are discussed here. [Pg.27]

Subsequent ion exchange of the metal cation with the quaternary ammonium ion catalyst provides a lipophilic ion pair (step 2), which either reacts with the requisite alkyl electrophile at the interface (step 3) or is partitioned into the electrophile-containing organic phase, whereupon alkylation occurs and the catalyst is reconstituted. Enantioselective PTC has found apphcation in a vast number of chemical transformations, including alkylations, conjugate additions, aldol reactions, oxidations, reductions, and C-X bond formations." ... [Pg.336]

Rau, M. Rieck, D. Evans, J.W. (1987) Investigation of iron oxide reduction by TEM. Metallurgical Transactions 188 257-278 Raven, K.P. Jain, A. Loeppert, R.H. (1998) Ar-senite and arsenate adsorption on ferrihy-drite Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Techn. 32 344-349 Rea, B.A. Davis, J.A. Waychunas, G.A. (1994) Studies of the reactivity of the ferrihydrite surface by iron isotopic exchange and Moss-bauer spectroscopy. Clays Clay Min. 42 23-34... [Pg.619]

Diquat insecticides, 34 1-2 Direct exchange, 38 426 magnetic orbitals, 38 435 Directly bonded complexes, 21 202-207 Direct oxide reduction, in actinide metal preparation, 31 6-7, 21-22, 25 apparatus, 31 29... [Pg.84]

The colors in rare earth glasses are caused by the ion being dissolved and they behave uniquely because the 4 f electrons are deeply buried. Their colors depend on transitions taking place in an inner electronic shell while in other elements such as the transition metals, the chemical forces are restricted to deformation and exchanges of electrons within the outer shell. Since the rare earth s sharp absorption spectra are insensitive to glass composition and oxidation-reduction conditions, it is easy to produce and maintain definite colors in the glass making process. ( )... [Pg.83]

In this reaction, oxalate ion may be oxidized intramolecularly by cobalt(III) ion, but it is interesting to compare the three different systems in w hich there are three, two, or one oxalate ions with the cobalt(III) cation. The last one can be boiled in l.OM add for an hour and nothing happens. In the first one, decomposition will occur very readily in aqueous solution at 50°C., so that oxalate exchange can t be measured, for instance. The middle one has not been studied in any detail yet, as far as I know, but there is oxidation-reduction in this too, though much slower than in the first. I wonder if this inhibiting effect of the nonreacting ligand, the diamine, on the oxidation has any simple explanation. [Pg.150]


See other pages where Oxidation-reduction exchange is mentioned: [Pg.307]    [Pg.307]    [Pg.673]    [Pg.357]    [Pg.135]    [Pg.216]    [Pg.247]    [Pg.530]    [Pg.244]    [Pg.76]    [Pg.64]    [Pg.113]    [Pg.134]    [Pg.217]    [Pg.71]    [Pg.180]    [Pg.812]    [Pg.160]    [Pg.399]    [Pg.705]    [Pg.346]    [Pg.288]    [Pg.70]    [Pg.217]    [Pg.383]    [Pg.569]    [Pg.128]    [Pg.412]    [Pg.124]    [Pg.454]    [Pg.243]    [Pg.177]    [Pg.323]    [Pg.501]    [Pg.415]   


SEARCH



Oxide exchange

© 2024 chempedia.info